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Summary
This paper proposes an approach to detect the possibility of long-term voltage

instability, based on online measurement of system bus voltages. An optimization

framework is proposed to determine the maximum loading points, with different

load increase patterns and different levels of reactive power output. The operating

conditions so obtained are used as the training database for an artificial intelligence

classifier based on the support vector machines. In an online application, the support

vector machine classifier helps in detecting the probability of some generators oper-

ating at high reactive power output, which is an important indicator of an impending

voltage collapse. The proposed framework is tested with the IEEE 39 bus and the

Nordic 32 bus systems. The test results demonstrate that the proposed scheme gives

reliable prediction of the power system long-term voltage stability.
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1 INTRODUCTION

Cascading failures and blackouts are the severest possible

contingencies in the operation of large electric power sys-

tems. The cascading event is generally triggered by the failure

of a critical component, which can lead to cascaded trip-

ping, loss of control at certain parts of the power system,

and eventually to islanding or total blackout. To reduce the

risk of cascading failures, many efforts have been made to

develop more efficient real-time algorithms for stability anal-

ysis and to improve power dispatcher’s situational awareness.

However, large-scale power grid failures continue to occur, as

evidenced by the North America blackout1 in 2003, the black-

out of the India power system2 in 2012, and the blackout in

the Southern grid of Vietnam3 in 2013.

A lot of research has been done on improving the accuracy

and effectiveness of online stability analysis.4,5 For long-term

List of abbreviations: OC, Operating Condition; OEL, Over Excitation Limiter; OLTC, On-Load Tap Changer; OPF, Optimal Power Flow; SVM,

Support Vector Machine.

voltage stability evaluation, the condition of the load flow

Jacobian is considered to be a good indicator of the power

system operating condition (OC). The reconstruction of the

Jacobian matrix from online measurements requires a sub-

stantial amount of data and the convergence of State

Estimation algorithms. Several alternative solutions to the

estimation of the Jacobian matrix have been proposed. Pre-

vious studies6-9 proposed a Thevenin representation of the

power system at important tie lines. The degradation of

steady-state performance can be detected by the changes in

the Thevenin circuit parameters. Glavic et al10,11 proposed the

construction of a reduced order model of the system that rep-

resents the network dynamics and the dynamics of Over Exci-

tation Limiter (OEL) devices. A framework for data filtering

and for computing voltage sensitivities from synchrophasor

data was proposed in 1 study12 to assess the voltage stability

condition.
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One important event in the developing process of voltage

collapse is the loss of voltage control, when the system’s

voltage level continues to decrease even with more reac-

tive injection from the generators. In small-signal stability

analysis, this is explained by the fact that there is an eigen-

value that changes sign.10,13 It has been shown that at this

point, the determinant of the system Jacobian matrix also

changes sign.14 An alternative solution to using Jacobian

matrix is based on sensitivity evaluation. Another study10

estimates the sensitivity of reactive injection regarding

load reactive demand. This approach has been shown to

detect instability condition earlier than the impedance-based

methods.11

It is well understood that reactive reserve and OEL devices

play very important roles during the process of voltage col-

lapse. Once the OEL is activated, it severely limits its gen-

erator reactive output, which causes a reduction in reactive

support for the neighboring area. Therefore, one reasonable

approach to anticipating the voltage collapse is by monitor-

ing the state of OEL devices in the system. Alternatively, the

reactive reserve of the whole system can be monitored. Sev-

eral studies suggest the use of reactive reserve to predict the

system voltage stability condition.15-17 One study15 shows that

there is a quasilinear relationship between Var reserve and the

maximum load margin for a given pattern of load increase.

Multilinear regression models have been developed to predict

the load margin, based on generators’ reactive reserves.16

The approach of determining the relationship between the

reactive reserve and the maximum loading point, as in previ-

ous studies,15-17 also has some drawbacks. First, the maximum

loading point, as well as the relevant generators, may change

considerably depending on the load increase pattern. Second,

the maximum loading point also depends on how the gen-

erators respond to the increase in active power load. This

represents another source of uncertainty. Third, in the power

flow–based framework to determine the maximum loading

point, the generators’ reactive reserves are determined by their

capability curves. Under actual OCs, a generator can pro-

duce reactive power beyond its rated value for a short period

of time, before corrective actions are issued to alleviate its

reactive power burden. To derive a more realistic generation

response, a quasi-static simulation (QSS) approach, which

models the OELs, and also the speed governors, can be used.18

The study in Capitanescu and Cutsem19 used this approach to

determine marginally stable OCs. One important feature of

the QSS-based approach is that it can take into account the

operating states in which several generators work above their

reactive power limits (before the OELs are activated).

The recent advances in synchronized measurement technol-

ogy PMU allow for better monitoring of the power system

in real time. Phasor measurement unit–based algorithms have

been proposed to detect transient instability20-22 and volt-

age instability.15,23 To evaluate the stability level of the OCs,

online measurements can be compared with the results of

off-line stability analysis. Several data mining tools, such as

artificial neural networks, support vector machines (SVMs),

decision tree (DT), and random forests can be used in

this regard.24-28 The accuracy and effectiveness of an online

algorithm based on data mining depend on the appropriate

choice of the training database and, even more importantly,

on the engineering relevance of the features selected as inputs

to decision making. Most of the existing works on artificial

intelligence (AI)–based voltage stability assessment use input

data obtained from static power flow solution, in which the

loads are gradually increased until the load margin is reached.

In fact, the dynamics of voltage collapse events are quite more

complex, involving several power system control and pro-

tection devices. Therefore, the input data from time-domain

simulation are more suitable to evaluate the effectiveness and

accuracy of online voltage stability assessment algorithm.

In this paper, a novel method for online detection of

impending long-term voltage instability condition is pro-

posed. The voltage stability assessment is based on the SVMs,

which estimates the reactive output levels from generators

using a probabilistic assessment framework. The accuracy

and effectiveness of the proposed framework are tested using

time-domain simulation results of voltage collapse events.

The following are the main contributions of the paper:

1. A novel method for assessing the reactive power out-

puts from generators is proposed, based on system-wide

voltage profile and an AI classification engine.

2. An optimal power flow (OPF) framework is proposed to

generate training data for the classification engine.

3. A multiclass classification approach is proposed. The

multiclass classifier allows the grid dispatcher to mon-

itor the progressive degradation of stability level and

thus determine the stability level with higher degree of

certainty.

The remainder of the paper is organized as follows: Section 2

presents an overview of the methods and algorithms

being used for predicting voltage instability. The proposed

algorithm is presented in Section 3. Test results for the New

England system and the Nordic 32 bus test system are pre-

sented in Section 4. A performance comparison between the

proposed approach and the sensitivity-based approach is also

presented in this section.

2 REACTIVE RESERVE MARGIN
AND VOLTAGE STABILITY

2.1 The process of long-term voltage collapse
Much research has been done on the mechanism of voltage

collapse and power grid blackout. A common scenario of

long-term voltage collapse can be described as follows29:

• The power system experiences very heavy power transfer on

important tie lines, and the reactive outputs of generators
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are at high level. An initial event, such as tripping of a

transmission line, disconnection of a generation unit causes

further burden on the power grid.

• The on-load tap changers (OLTCs) get activated, which

helps in recovering the voltage at load buses. As a result,

the load demand is recovered. However, the load recov-

ery process places additional reactive power burden on the

generators. At this point, one of the generators may reach

reactive power limit.

• If the overloaded condition of the excitation system is not

alleviated, the Over Excitation Protection (OEL) will trip.

As a result, the reactive burden will be shifted to the nearby

generators. Hence, OEL devices of these generators might

also be activated.

• Eventually, the power system reaches a state where there

is severe loss of voltage control. The voltage will decay

rapidly, leading to voltage collapse and cascaded tripping

of protective relays.

The voltage collapse phenomenon described above is initi-

ated by a loss of voltage control in the system. In the process of

voltage decay, more and more reactive power is injected into

the system. As a result, the voltages at several system buses

get increasingly lower. Therefore, the main input variables

for voltage stability analysis can be bus voltage magnitudes,

reactive power flows, or branch currents.15

2.2 Reactive reserve and voltage profile
In this work, we propose to use system bus voltage magni-

tudes to determine reactive power output from system gener-

ators. The proposed algorithm for voltage stability evaluation

can be explained by analyzing a simple radial power system,

which consists of 5 buses: The generator is at bus 1, and the

load is at bus 5. We want to evaluate how much the load at

bus 5 can be increased, with a constant power factor. The

maximum load margin depends on the generator’s active and

reactive limit. With the active power limit relaxed, there are

4 possible results as shown in Figure 1:

• If the generator’s reactive limit is set at 100% of its rated

capacity, then at the maximum loading point, the voltage

profiles are 1A and 2A, when the generator voltage is set

at 1.1 and 1.02 pu, respectively.

• If the generator’s reactive limit is increased to 130% of its

rated capacity, then at the maximum loading point, the volt-

age profiles are 1B and 2B, when the generator voltage is

set at 1.1 and 1.02 pu, respectively.

Cases 1A and 2A are stressed OCs, where an action would

be necessary to reduce the reactive power burden of the gen-

erator. Cases 1B and 2B are very critical OCs, because the

generator’s reactive output is much higher than its rated capa-

bility. If no action is taken in time, the OEL protection will

FIGURE 1 Illustration of the proposed concept: reactive output and

voltage profile

get activated and reduce generator’s reactive output, which

may result in voltage instability. The objective of the pro-

posed algorithm is to differentiate between voltage profiles

of cases A and B. It can be seen from this very simple

example that cases B have higher voltage loss, because of

higher I2X loss in the system. The classification of actual sys-

tems will be much more complicated, because the system may

have meshed structure, and the load increase patterns can be

diverse. Moreover, there will be additional complexity if there

are bus voltages regulated by OLTCs.

3 PROPOSED ALGORITHM

3.1 The proposed framework
This paper proposes the use of an AI classifier based on

the SVM to detect the impending voltage collapse events.

Based on online measurements of system bus voltages, the

AI classifier will estimate the probability of generators work-

ing at a high reactive output. The main requirements for this

classification engine are as follows:

1. It must be able to differentiate the OC, in which the sys-

tem still has ample reactive reserve, from the OCs in

which reactive reserves are depleted.

2. The margin of separation between these 2 classes of

training instances must not be too large. That is, some

amount of overlapping should be allowed. If the dif-

ference between the voltage profiles of the 2 classes is

clear, then the advantage of the engine is reduced: even

though we get very good training result (very low false

classification rate), the engine would trigger the alarm

signal about depleting reactive reserve when it is already

too late.
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With the above-mentioned requirements, the 2 following

extreme OCs for loading margin calculations are important in

database generation:

• Operating conditions representing cases 2A in Figure 1:

The system still has a large amount of reserve, but the volt-

age set points of generators (or sink buses) are set low

(1-1.05 pu). This might be considered a suboptimal OC,

since the line charging capacitances are not used effec-

tively. However, these OCs are still common in practice.

• Operating conditions representing cases 1B in Figure 1:

The system draws very large amount of reserve, eg, 130%

percent of the rated reactive capability at some gener-

ators, and the generator voltage set points are set very

high to maximize reactive support from line charging

capacitances.

As the reactive power burden increases in the system, the

generator operating point will reach the reactive limit. Thus,

the maximum loading point can be determined by gradu-

ally increasing the load demand, following a specific pattern,

until the load flow fails to converge. In practice, the grid dis-

patchers and power plant operators can anticipate the OC at

reactive limit and perform local corrective actions to relieve

the reactive burden of highly stressed generators. Once the

appropriate corrective actions are performed, the reactive bur-

den can be shifted towards nearby generators (load shedding

is avoided). With this consideration, the maximum loading

point that the system can provide, under a given load increase

pattern, can be best determined using an OPF framework. To

determine the maximum loading point at load buses k ∈ Ck,

the optimization problem is formulated with the following

objective function: ∑
k∈Ck

Plk → max (1)

subject to

g(x) = 0 (2)

Qlk = λkPlk (3)

h(x) ≤ 0 (4)

Ug.min ≤ Ug ≤ Ug.max (5)

Pg.min ≤ Pg ≤ Pg.max (6)

Qg.min ≤ Qg ≤ Qg.max (7)

where Plk is the active load demand at load bus k, Ck is the set

of load buses, x = [𝜃,Um,Pg,Qg]T is the vector of optimiza-

tion variables, Um is the vector of system bus voltage mag-

nitudes, and Ug ∈ Um is generator bus voltages. Equation 2

represents the load flow constraints, and Equation 4 the

branch flow constraints. The generator voltage and active

and reactive power are subject to constraints 5 to 7. The

branch flow and voltage constraints should be relaxed to

find the maximum loading point that stresses the generators’

capability to their limits. Besides, the lower voltage limit at

load buses are also relaxed.

Problem 1 will be solved with different load increase pat-

terns, by varying the coefficient λk. With this approach, the

obtained maximum loading point will have several generators

working at their reactive limits. The system bus voltages at

this maximum loading point will be used as the training data

for an AI-based classifier. The reason for using an OPF-based

algorithm is as follows: With an optimal dispatch of the sys-

tem’s active and reactive power, the generators still have to

produce high amounts of reactive power. Therefore, it is safe

to conclude that the OC is very critical, and corrective actions

are needed. The proposed framework is thus composed of

2 components: (1) The OPF problem is solved to determine

how to optimally dispatch generators for a given load increase

scenario; (2) the AI engine is used to identify whether the

actual operating point (in terms of voltage profile) is a close

match with one of these optimal solutions. It can be seen that

the OPF is formulated such that in the optimal solution, the

generators’ reactive outputs reach their limits. Therefore, the

tap changers will not have a significant impact on the optimal

results.

As discussed in Section 1, the QSS approach gives more

accurate estimates of the generation response to a certain load

increase scenario. However, long-term power system dynam-

ics are always influenced by human intervention. Hence, a

static approach based on OPF is proposed, so that the dis-

patchers’ corrective actions can be modeled. It should be

noted that the grid dispatchers might not have sufficient

time and system information to determine the best corrective

actions.30 However, an operating point based on OPF still rep-

resents the actual long-term condition more accurately than

the one obtained from time-domain simulation without any

corrective action.

To account for the situations in which some generators

operate temporarily in overexcitation mode, the reactive limit

in Equation 7 was set at different values (96%-130%). The

optimal solutions obtained with 96% reactive output limit rep-

resent OCs of cases A, and those obtained with 120% to 130%

reactive output limit represent OCs of cases B in Figure 1.

The process of database creation is illustrated in Figure 2.

The load increase scenarios at load buses are varied with

different load increase patterns. Besides, for each training

instance, the maximum voltage set point Ug was imposed ran-

domly at each generator (from 1.02 to 1.1 pu). As discussed

in the work of Capitanescu,30 when the objective of the OPF

is to maximize the reactive reserve, the optimal solution often

results in several generators working at its highest voltage

set point. In practice, the power plants are not always oper-

ated at 1.1 pu voltage set point. Thus, we choose to vary the

upper bound of set point voltage (Equation (5)), so that a

wider range of realistic OCs can be created. Since the gen-

erators’ voltage set points and the load increase patterns are
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FIGURE 2 Framework for database generation. OPF, optimal power

flow

varied, the proposed approach can take into account a wide

range of possible OCs. However, the training dataset will be

complex and it is difficult to achieve a highly accurate classifi-

cation rate, because there are significant overlaps between the

instances of different classes. Given this difficulty, it is impor-

tant that the condition of depleted reactive reserve is detected

accurately and early, so that mitigation actions such as load

shedding and blocking of OLTCs31 can be more effective.

3.2 Classification based on AI tools
The previous section has shown that it might be possible

to assess the level of reactive outputs from the system gen-

erators by observing the system voltages and using a pat-

tern recognition–based approach. In this work, we propose

to use SVMs for classification task. The SVM have been

used successfully to classify OCs, based on transient stability

criteria.20,32 A linear SVM can be described by Equation 8:

f (x) = sign(wTx + b) (8)

The concept of a linear SVM is illustrated in Figure 3. The

obtained optimal hyperplane separates the input space with a

maximum possible margin. Instances that satisfy wTx+b > 1

and wTx + b < −1 belong to classes (label) “+1” and “−1”,

and those that satisfy wTx + b = ±1 are called the support

vectors. The vector w is called the weight vector.

FIGURE 3 Concept of support vector machines. The optimal

hyperplane separates 2 classes of instances: square and circle. The

dark-filled instances are called support vectors

The objective of training the SVM is to maximize the

margin
2||w|| , which is equivalent to minimizing ||w||. The

optimization problem is formulated as follows:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi, (9)

subject to {
yi(wTϕ(xi) + b) ≥ 1 − ξi
ξi ≥ 0.

(10)

In Equation 10, the function ϕ(x) represents a nonlinear

mapping, which maps the input vector x into a higher dimen-

sional space. With appropriate selection of the kernel func-

tion, the classification problem becomes linearly separable in

the new higher dimensional space. To allow for some mis-

classification, a penalty on error term C is used in Equation 9.

The SVM concept can be expanded for multiclass classifi-

cation. The common strategy for multiclass classification is

comparing one-against-one or one-against-all.33 In this work,

the LibSVM package34 was used for SVM training. Besides

giving a predicted label for an input instance, the probability

of this label (ie, its degree of certainty) can also be esti-

mated. In the developing process of voltage instability, the

SVM engine will give the highest probability first to a normal

state, then to the highly stressed state, and finally to the crit-

ical state. This progression can be a more reliable indication

of a gradual decrease in voltage stability level. This proba-

bilistic assessment is very useful in the proposed framework,

because the training dataset is deliberately created such that

there is significant overlaps between classes, as discussed in

Section 3.1.

Besides the SVM, several other classification tools

can be used in the proposed framework. Currently, the

state-of-the-art classification engines are as follows35: the

probabilistic neural networks, the DT and its variants, such
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FIGURE 4 The New England system

as random forest and bagged trees, etc. The DTs have been

used successfully for transient stability classification.21,24 The

main principle of these tools is that a group of “weak learners”

can form a more accurate predictor. Each ensemble consists

of several DTs, which are trained with different subsets of

the training data. Similar to the probability estimation of the

SVM, these classification engines also estimate the probabil-

ity of the prediction label, using different scoring systems.

4 TEST RESULTS AND
PERFORMANCE COMPARISON

4.1 The New England system
The proposed algorithm was first applied for the New Eng-

land (IEEE 39 bus) system, as shown in Figure 4. For this

system, 2 classes of reactive output levels—the first one 110%

and the second one 130%—were prepared for SVM training.

The OPF calculation was conducted using MATPOWER.36

For SVM input features selection, only the voltages of 230-kV

buses were selected. A total of 600 OCs were created. As the

difference between the voltage profiles of the 2 classes was

large, the achieved classification accuracy was almost 100%.

The contingency considered for this system was the loss of

a generation unit at bus 38. The simulations were performed

using PSS/E software. In the dynamic simulation, the loads

are represented as ZIP model. The system voltage response to

the tripping of the generator at bus 38 is shown in Figure 5.

FIGURE 5 Voltage response of New England system, with loss of

generator at bus 38

The reactive power outputs of all the system generators and

the timing of OEL actions are shown in Figure 6.

The tripping of the generating unit at bus 38 resulted in volt-

age collapse at around 100 seconds (see Figure 5). As can be

seen in Figure 5, the tripping of the generating unit at bus 38

resulted in voltage collapse at around 100 seconds. It is evi-

dent from Figure 6 that while the OEL was under activation at

one generator, the other generators in the system had to take

on additional reactive power burden. The cascaded operations

of OEL devices have led to voltage collapse.

Figure 7 shows the probability estimation of reactive

reserve margin, in function of time. Voltage signals were
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FIGURE 6 Generator reactive output, with loss of generator at bus 38. OEL, Over Excitation Limiter

FIGURE 7 Probabilities reactive output level, with loss of generator

at bus 38

sampled at every 0.1 second and sent to the SVM engine.

To evaluate the effect of transient responses on the perfor-

mance of the SVM, no attempt was made to filter the voltage

waveform.

It can be seen from Figure 7, that after the OEL activations

at generators G8 (bus 37) and G4 (bus 33), the probability of

instability rose very rapidly. The violation of 130% reactive

reserve margin can be confirmed with high certainty (more

than 80%) at around 50 seconds. At this instant, some system

bus voltages also started to decrease below 0.9 pu, as shown

in Figure 5. There was ample time for mitigation action, as

the voltage collapse did not happen until 50 seconds later. At

t = 5 seconds, where the generator G9 tripped, the system

transient caused severe disturbance to the probability evalu-

ation. Therefore, a low-pass filter should be applied at bus

voltages to avoid false classification. The other alternative is

to wait until the probability estimates become quite consistent,

before applying corrective actions.

4.2 The Nordic 32 bus system
The foregoing New England system example is a simple

demonstration of the proposed algorithm. With this system,

the classification problem is rather simplified, because there

were no OLTC actions considered. To verify the effectiveness

of the proposed algorithm when there are OLTCs, we applied

it to the Nordic 32 bus test system. This system was created

by CIGRE for the analysis of long-term voltage instability.37

Long-term voltage stability simulations for this system have

been reported extensively in the literature.10,38 The single-line

diagram of the Nordic 32 bus test system is shown in Figure 8.

4.2.1 Database generation and training
For this system, we created 3 following classes of reactive

reserve margins:

• Class 1—“100% reactive power output.” For this class,

2 sets of optimization solutions were used: one with gen-

erators’ reactive limit set to 100% and the other with

generators’ reactive limit set to 96%.

• Class 2—“110% reactive power output.”

• Class 3—“120% and higher reactive power output.” For

this class, 2 sets of optimization were performed. The first

one with generators’ reactive limit extended to 120% of

their rated capacity, and the second one extended to 130%.

A total of 1600 OCs were created for these 3 classes. The

voltage magnitudes at all 400 kV and load buses were used

as input for the SVM. The performance matrix of the SVM

classifier for 3 data classes is shown in the Table 1. Unsur-

prisingly, the classification accuracy of class 2, which lies

between the other 2 classes, is the lowest. As discussed in

Section 3, the database is created such that there are sig-

nificant overlaps between classes. Thus, the classification
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FIGURE 8 The Nordic 32 bus system

TABLE 1 Performance of the SVM for 3 data classes

Data Classified as 1 Classified as 2 Classified as 3

Class 1 (100%) 97.22 % 2.78 % 0%

Class 2 (110%) 5.05 % 93.18 % 1.77%

Class 3 (≥120+%) 2.52 % 3.14 % 94.34%

Abbreviation: SVM, support vector machine.

accuracy as shown in Table 1 can be considered very good,

with a very small false negative rate (class 3 being classified

as class 1) and zero false positive rate (class 1 being classified

as class 3).

4.2.2 Case 1: unstable long-term dynamics
The disturbance considered in this case was the tripping of

the generator at bus 4047, at t = 50 seconds. The system

voltage response is shown in Figure 9. After the tripping of

the generator, the system suffered low voltage, which led to

several OLTC operations. As a result, the system’s reactive

reserve reduced gradually. Finally, several OEL relays timed

out. The OELs at generator buses 1042, 1043, 4042, and 4031

timed out at 139, 139, 142, and 156 seconds, respectively.

After 200 seconds, the system suffered a very low voltage pro-

file and unstable power oscillation. Voltage collapse finally

occurred at t = 242 seconds.

The probabilities of different reactive margin levels are

shown in Figure 10. Again, as the voltages were not subjected

to filtering, we could observe the oscillations in the proba-

bility estimation, due to OLTC switchings. After the tripping

of the unit at bus 4047, the probability of “120+% reactive

level” started increasing. At around 125 seconds, its probabil-

ity became significantly higher than that of the 2 other labels,

which evidently indicated that excessive reactive power was

being drawn from the remaining generators. It is worth not-

ing that, at this time, no OEL relays timed out yet. As the



NGUYEN DUC ET AL. 9 of 12

FIGURE 9 Voltage response of Nordic system, with loss of

generator at bus 4047

FIGURE 10 Probability of reactive output levels, with loss of

generator at bus 4047

system’s voltage condition deteriorated, the certainty level of

the “120+% reactive output” class also increased. Besides,

most bus voltages remained at higher than 0.9 pu, which is

above the practical voltage level for most undervoltage load

shedding relays.

From a comparison of the changes in probability prediction

of the Nordic 32 bus system (see Figure 10) with those of New

England system (see Figure 7), it becomes evident that the

probability estimates change much more slowly in the case of

the Nordic 32 bus system. As there is little difference between

the voltage profiles of different input classes, the SVM engine

cannot estimate, with high certainty, the reactive reserve level

of the system during the first cascading OLTC actions. How-

ever, when the probability of 120+% reactive output was high,

there was still a large time window for the grid dispatcher to

initiate corrective actions. In the case of the New England

system, the “130% reactive output” was detected with high

certainty, but only when the system voltages were already

quite low, and the system was close to voltage collapse. This

comparison suggests that a multiclass classification approach

should be used to detect the progressive evolution of voltage

collapse.

FIGURE 11 Voltage response of Nordic system, with loss of line

4030 to 4044

FIGURE 12 Probability of reactive output levels, with loss of line

4030 to 4044

4.2.3 Case 2: marginally stable long-term
dynamics
In this case, the system was simulated with line 4030 to

4044 tripped at t = 50 seconds. This event triggered several

OLTC actions at load buses. However, the generators’ reac-

tive reserves were not depleted, and the system stabilized at

800 seconds, without any further OLTC action. The system

voltages are shown in Figure 11. It is noteworthy that many

bus voltages settled at 0.85 to 0.9 pu.

The reactive power margin probability evaluation is shown

in Figure 12. The probability of generators working at 110%

reactive limit is highest, which indicates a highly stressed

condition.

4.3 Comparison with the sensitivity-based
approach
The results presented in the previous sections showed good

performance of the proposed framework, which allows detect-

ing early the voltage collapse events. In this section, we

present briefly a performance comparison between the pro-

posed framework and the sensitivity-based method.10 The

sensitivity-based method relies on estimations of the change
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FIGURE 13 Performance of the sensitivity-based method on the New England system

FIGURE 14 Performance of the sensitivity-based method on the Nordic 32 bus test system

in total reactive generation and the change in reactive

demands at load buses. The principles of the sensitivity

method proposed in 1 study10 are as follows:

• Monitor the power system parameters (voltage, currents,

and branch flows) and the status of OEL relays.

• Establish a reduced order dynamic model of the system

based on the measurements mentioned above.

• Assess the sensitivity of total reactive generation (Qg)

regarding the reactive demand at load buses (Ql). If this

sensitivity measure changes to a negative sign, a volt-

age instability condition is indicated, because the negative

sensitivity is equivalent to the appearance of an unstable

eigenvalue.

The performance of this method is thus dependent on the

accuracy of the measurements and the accuracy of the iden-

tification method to derive a reduced system model. In this

comparative study, we assume that a perfect measurement and

a perfect identification result can be achieved. Therefore, the

effectiveness of the sensitivity-based method will be assessed

based on observation of raw data obtained from time-domain

simulation. Another assumption is that we know exactly the

weakest bus where the sensitivity measure would change sign.

For the simulation scenario of the New England system, it

is obvious that bus 29 is the weakest bus, since the active

and reactive demand from this bus need to be supplied from

remote generation buses, after the generator at bus 38 is
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tripped. Figure 13 presents the total reactive generation and

the reactive demand at bus 29. A negative sensitivity can

be observed from 42 seconds. When the voltage instability

accelerates at 97 seconds, the sensitivity measure becomes

very high, as the increase in total reactive generation and the

reduction of reactive demand at bus 29 are both very steep.

Compared to the performance of our proposed approach in

Figure 7, it can be seen that the sensitivity-based method

might detect the unstable condition slightly earlier. However,

we need an effective filtering algorithm and a long time win-

dow to smooth the transient effects caused by OEL switching

and obtain an accurate assessment.

For the simulation scenario of the Nordic 32 bus test sys-

tem, the load bus to be monitored is bus 47, nearest to bus

4047 where the generator is tripped. The total reactive gen-

eration and the reactive demand at bus 47 are shown in

Figure 14. In this case, a negative sensitivity occurs clearly at

160 seconds. Compared to the result in Figure 10, it can be

seen that our proposed approach triggers an alarming signal

earlier (around 125 seconds). Besides, in this case, the effec-

tiveness of the sensitivity-based method might be reduced

because of large transients caused by OLTC switching and the

unstable oscillations near the final voltage collapse. It should

be noted that in other studies,10,11 the authors have used a QSS

method, which could not present accurately the effect of fast

transients.

5 DISCUSSION AND CONCLUSION

Depleted reactive power margin is considered an alarming

signal for impending voltage instability. This paper has pro-

posed a framework to assess the reactive output level from

generators, based on real-time measurement of system volt-

ages. The proposed analytical model does not require any

dynamic model of the generators, loads, or OEL relays. The

simulations performed with 2 test systems—the New England

and the Nordic 32 bus test systems–show that the event of

voltage collapse can be predicted quite early and accurately.

In the case of Nordic 32 bus test system, the critical condition

was detected even before the first OEL action. The simula-

tions in Section 4 also show the reliability of the proposed

algorithm. Even without input filtering, the transition of reac-

tive output level from a normal to a critical state can still be

observed. As OCs for different classes have large overlaps, it

is difficult to achieve very high classification accuracy. How-

ever, with the proposed multiclass classification approach and

the use of probability/score estimates, the reliability of volt-

age stability assessment can be guaranteed. A comparison

with the sensitivity-based algorithm10 showed that the pro-

posed method is much less affected by the transients caused

by OLTCs and OELs.

The results obtained also underline the need for a wide-area

protection scheme against voltage instability. Simulations

with the Nordic 32 bus system show that an impending volt-

age collapse can be detected when all the bus voltages are

still beyond 0.9 pu, whereas in the other case, no load shed-

ding is required, even when several bus voltages have reached

0.85 pu. This will be the focus of the author’s future work.

Future work may also focus on the corrective action that

can be deduced from the trained classifiers. The proposed

approach can also be tested with other AI classifiers such as

the random forest and the bagged trees.
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Abstract - In the electricity market operation, wholesale electricity 
prices or Locational Marginal Prices (LMP) vary according to electric 
demand (including consumption power consumed, bidding prices 
and the level of price-sensitivity) as well as the penetration level of 
the wind power. The variable domain identification of LMP plays a 
very important role for market participants to assess and mitigate the 
risk on account of the uncertainty of wind power output forecasting. 
Traditionally, the Monte Carlo simulation (MCS) method can be used 
in order to determine the variable intervals of LMP. However, in this 
paper, the authors deploy a bi-level optimization model to calculate 
the upper and lower bounds of LMP when considering the 
uncertainty of wind power and elastic demand. The objective function 
of the upper-level optimization problem is to maximize (or minimize) 
LMP at a node whereas the objective function of the lower-level 
optimization problems is to calculate the optimal power generation of 
the units participating in supplying the load. 

Key words - Wholesale electricity market; mathematical program 
with equilibrium constraints (MPEC); mixed-integer linear 
programming (MILP); wind power uncertainty; elastic demand. 

1. Introduction 
Currently, many countries around the world, including 

Vietnam, have been operating wholesale electricity markets. 
In the wholesale electricity market, the market participants 
are generation companies (GENCOS) and distribution 
companies (DISCOS). The market operator collects 
generating offers by producers, load bids by consumers and 
clears the market by maximizing the social welfare [1]-[2]. 

The uncertainty from wind output has brought 
unprecedented challenges to the optimal operation of the 
electricity market. The power system operation has been 
dealing with the uncertainty of load, different from load 
uncertainty; however, wind output is characterized with 
large uncertainties and low prediction precision [3]. On the 
other hand, load demand has an intrinsic pattern and thus the 
load prediction, especially, in short-term, has a significantly 
high forecast accuracy [3]. Therefore, the optimal operation 
and dispatching model considering stochastic wind power 
output has been a hot topic for research. 

Reference [4] studied the effect of wind integration and 
wind uncertainty on power system reliability, using an ARMA 
model to analyze short-term wind forecast. Reference [5] 
studied the impact of stochastic wind power on the unit 
commitment (UC) problem and constructed a UC stochastic 
optimization problem with the objective to minimize the 
expected operation cost. In reference [6], the influence of 
distribution generation on a heavily loaded distribution system 
with a wind forecast model based on statistics is tackled. A 
mixed-integer stochastic optimization model is established in 
[7] where the wind uncertainty is modeled with ARMA as 
well as Latin hypercube sampling and a scenario reduction 
method is adopted to simplify the computation. 

The first step to investigate the effect of uncertainty is 
to model the uncertain wind output by using a variety of 
methods, for instance, probability distribution model [8], 
fuzzy model [9] and interval number model [10]. In the 
next steps, different optimization models are applied to 
find the solution. 

To make payments in the electricity market, locational 
marginal prices (LMP) are calculated. The difference in 
LMPs between two nodes of a branch depends upon the 
congestion and losses on that branch [2]. The locational 
marginal pricing methodology is widely used in electricity 
markets to determine the electricity prices and to evaluate 
the transmission congestion cost [11]-[12]. Step change 
characterizes of LMP under system load variation has been 
identified and discussed [13]. Moreover, the concept of 
critical load level (CLL) is defined and employed for load 
frequency control [13]. Based on a similar idea, the 
investigation of the impact of variable wind power outputs 
on LMPs must be worth launching. It is important to find a 
method to efficiently obtain the wholesale electricity price 
intervals under the variation of wind power output and 
elastic demand. 

This paper proposes an approach to determine the 
intervals of LMP using a bi-level optimization model, which 
is similar to the interval number-based optimization model 
regarded as the optimization of optimization. In addition, the 
impact of the uncertainty of wind power as well as the level 
for demand-bid price sensitivity is also analyzed. 

The next sections of the article are organized as follows. 
In section 2, the authors present bi-level optimization model 
to determine LMP intervals. In addition, the authors also 
describe the solution to this bi-level optimization problem 
including the procedure of transferring it into a Mathematical 
Program with Equilibrium Constraints (MPEC) problem and 
the conversion from MPEC to a Mixed-Integer Linear 
Programming (MILP). Section 3 demonstrates the simulation 
results and numerical analyses of PJM 5-bus system. Some 
conclusions are given in section 4. 

2. LMP interval under wind power uncertainty 
2.1. Market clearing model 

Economic Dispatch (ED) considering elastic demands 
in wholesale electricity market is carried out by 
Independent System Operators (ISOs) to clear market as 
well as determine LMPs and output of generating units. In 
this paper, the DCOPF-based approach without losses is 
employed to model the electricity market and estimate 
LMPs. This DCOPF is a linear programming (LP) problem 
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where N is the number of buses; M is the number of lines; 
cGi and cWi are energy prices offered by conventional 
generation and wind power, respectively; PGi and PWi are 
power outputs of the conventional generating unit and wind 
power, respectively; cDi is the price bid by demand i;

E F
Di DiP and P  are the elastic power and fixed power of 

demand i, respectively; GSF is the generation shift factor 
matrix; min

GiP  and max
GiP  are the upper and lower bounds of 

the convention generation output; max
WiP  is the maximum 

available wind power output; maxE
DiP  is the maximum 

price-sensitivity demand at bus i; and the variables on the 
right side of the colon are the dual variables associated with 
the equality and inequality constraints on the left. 

The LMP at bus i can be calculated from the Lagrange 
function of the above ED problem. This function and LMP 
are given by 
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2.2. LMP interval and its bi-level optimization form 
Traditionally, the intervals of LMP are usually 

evaluated using Monte Carlo Simulation (MCS) approach. 
However, this approach requires a huge amount of 
computation time in comparison with the bi-level 
optimization approach in terms of the same level of 
accuracy. 

The problem for calculation LMP interval is formulated 
as follows: 
 � �: max mini iUpper Level LMP or LMP  (9) 

� � � �^ `. : mod 1 6s t Lower level ED optimization el �  (10) 

 max
, ,wf i Wi wf iP P Pd d  (11) 

where ,wf iP and ,wf iP  is the forecast upper and lower 

bounds of the maximum wind power output. In other 
words, interval constraints are used to model the maximum 
wind power output in the upper level. 

In the above formulation, we see that if there are N 
buses in the power system, 2N optimization runs should be 
carried out. 
2.3. Formulation as a MPEC 

Given that the lower level ED is an LP problem, the bi-
level can be transformed into a Mathematical Program with 
Equilibrium Constraints (MPEC) by recasting the lower 
level problem as its Karush-Kuhn-Tucker (KKT) optimality 
conditions, which are added to the upper level problem as 
the additional complementary constraints [14] - [16]: 
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N
F E

l l l i Gi Wi Di Di
i

Limit GSF P P P P�
 

d P A � � � � t¦ (18) 

 min min0 0i Gi GiP Pd Z A � t  (19) 

 max max0 0i Gi GiP Pd Z A � t  (20) 

 min0 0i WiPd M A t  (21) 

 max max0 0i Wi WiP Pd M A � t  (22) 

 min0 0i DiPd I A t  (23) 

 min max0 0E E
i Di DiP Pd I A � t  (24) 
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2.4. Mixed-Integer Linear Programming (MILP) 
The MPEC model depicted in (12) – (24) is nonlinear 

on account of the slack complementarity constraints (17) – 
(24). These slack complementary constraints are 
compactly written as � �0 F x x 0d A t , which is stated 
equivalently in vector form as: 

� � � �TF x 0, x 0, F x x 0t t       (25) 

With the method in [15], however, this MPEC problem 
can be converted to a mixed-integer linear programming 
(MILP), which can be solved by CPLEX [18]. The MILP 
model is presented as follows: 

OBJ: (9)            (26) 
s.t. Constraints in (13), (14), (15) and (16)  (27) 

 min min min
,0 l lMP Pd P d Q  (28) 

 
� �

� �
1

min min
,

0

1

N
F E

l l i Gi Wi Di Di
i

l

Limit GSF P P P P

M

�
 

P P

d � � � �

d �Q

¦
 (29) 

 max max max
,0 l lMP Pd P d Q  (30) 

 
� �

� �
1

max max
,

0

1

N
F E

l l i Gi Wi Di Di
i

l

Limit GSF P P P P

M

�
 

P P

d � � � �

d �Q

¦
 (31) 

 min min min
,i0 i MZ Zd Z d Q  (32) 

 � �min min min
,0 1Gi Gi iP P MZ Zd � d �Q  (33) 

 max max max
,i0 i MZ Zd Z d Q  (34) 

 � �max max max
,0 1Gi Gi iP P MZ Zd � d �Q  (35) 

 min min min
,i0 i MM Md M d Q  (36) 

 � �min min
,0 1Wi iP MM Md d �Q  (37) 

 max max max
,i0 i MM Md M d Q  (38) 

 � �max max max
,0 1Wi Wi iP P MM Md � d �Q  (39) 

 min min min
,i0 i MI Id I d Q  (40) 

 � �min min
,0 1E

Di iP MI Id d �Q  (41) 

 max max max
,i0 i MI Id I d Q  (42) 

 � �Emax max max
,0 1E

Di Di iP P MI Id � d �Q  (43) 

where min max min max min max min, , , , , , ,M M M M M M MP P Z Z M M I

maxMI  are large enough constants and min max min
, , ,, , ,l l iP P ZQ Q Q  

max min max min max
, , , , ,, , , ,i i i i iZ M M I IQ Q Q Q Q  are the auxiliary binary 

variables [14]. 

3. Results and discussions 
In this section, the bi-level optimization approach is 

performed on the modified PJM 5-bus system [17]. The 
MILP problem is solved by CPLEX 12.7 under MATLAB 
environment. 
3.1. System data 

The test system is modified from the PJM 5-bus system 
[10], as shown in Figure 1. Two wind plants (WF1 and 
WF2) with the same capacity are added into the system at 
buses A and C while one original generator is removed 
from bus A. The total fixed and maximum elastic demand 
is 1200 MW equally distributed among buses B, C and D. 

 

E D

A B C

Limit=240 MW

Brighton

Park
City Load

Center
Solitude

Sundance

WF1 WF2

100MW
$14

600MW
$10

200MW
$35

520MW
$30

Limit=400 MW

 
Figure 1. PJM 5-bus system with two wind farms 

3.2. Impact from wind power uncertainty 
This subsection shows the impact of wind power 

forecast uncertainty on LMP interval. The simulation 
parameters are shown in Table 1. In addition, the only fixed 
demand is considered in this subsection. 

Table 1. Uncertain parameters of wind power 

Wind Power Model Normal Distributed 

WF wind power mean (MW) 180 

WF2 wind power mean (MW) 180 

Wind power standard deviation range (%) 0-30% 

It should be emphasized that the findings calculated in 
this work are exactly the same in comparison with the MCS 
method (with 5000 samples), while the simulation time for 
bi-level optimization-based approach is dramatically lower 
than that of MCS. Table 2 shows results achieved across 
all buses from both approaches when the standard 
deviation equals 15% from the mean. 

Table 2. LMP result intervals from MCS method and  
Bi-level optimization method 

Bus Bi-vel optimization method MCS method 
A [15.24, 16.98] [15.24, 16.98] 

B [23.68, 28.18] [23.68, 28.18] 

C [26.70, 30.00] [26.70, 30.00] 
D [35.00, 39.94] [35.00, 39.94] 

E [10, 10] [10, 10] 

Table 3 shows LMP intervals when the indicator of 
wind forecast uncertainty (σ) changes. According to the 
results shown in Table 3, in general, when the standard 
deviation of forecasting wind power increases, the 
difference between the upper and lower bound of LMP at 
every bus also rises. Moreover, these results also reveals 
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that despite the variation of wind power uncertainty, the 
LMP intervals at bus C remain unchanged. 
3.3. Impact from Demand-Bid Price Sensitivity 

To investigate the influence of variation in the level of 
demand price sensitivity, [11] proposed the coefficient 
which is defined as Eq. (43). 

 
max

max

E
Di

i F E
Di Di

P
R

P P
 

�
 (44) 

From the formula (43), the R values range from 0.0 (100% 
fixed demand) to 1.0 (100% price-sensitive demand). 

Figure 2 illustrates the construction of R for the special 
cases R = 0.0, R = 0.5 and R = 1.0. 

In this paper, it is assumed that the ratio R of four 
demands is similar. Additionally, the forecast mean value 
of both wind powers is 180 MW and it follows a normal 
distribution with a standard deviation of 10% from the 
mean. 

Table 4 presents the LMP internal results with the 

various R values from the proposed approach. According 
to this Table, the R ratio markedly affects the locational 
marginal prices at every bus in terms of the maximum and 
minimum values as well as the difference between these 
two items. In particular, when R varies from 0.4 to 0.6, 
there is a decline in the maximum and the minimum values 
of LMP at bus D; however, these values of LMP at bus E 
grows considerably. Furthermore, when the R ratio equals 
0.6, 0.8 and 1.0, respectively, the LMP intervals remain 
stable at all buses. 

Price ($/MWh)

PD (MW)

Price ($/MWh)

PD (MW)
maxE

DPF
DPF

DP PD (MW)
maxE

DP

Price ($/MWh)

R=0.0 R=0.5 R=1.0  

Figure 2. Illustration of the R ratio construction for  
the experimental control of demand-bid price sensitivity 

Table 3. LMP interval results with the various standard deviation 

Bus 
LMP interval 

σ = 0% σ = 5% σ = 10% σ = 15% σ = 20% σ = 25% σ = 30% 
A [15.24, 15.24] [15.24, 15.83] [15.24, 16.98] [15.24, 16.98] [15.24, 23.45] [15.24, 23.45] [15.24, 23.45] 

B [28.18, 28.18] [23.68, 28.18] [23.68, 28.18] [23.68, 28.18] [23.68, 28.18] [23.68, 28.18] [23.68, 28.18] 

C [30, 30] [26.70, 30.00] [26.70, 30.00] [26.70, 30.00] [26.70, 30.00] [26.70, 30.00] [26.70, 30.00] 

D [35, 35] [35, 35] [35.00, 39.94] [35.00, 39.94] [35.00, 39.94] [35.00, 39.94] [35.00, 39.94] 
E [10, 10] [10, 10] [10, 10] [10, 10] [10.00, 19.94] [10.00, 19.94] [10.00, 19.94] 

Table 4. LMP interval results with R different demand-bid price sensitivity 

Bus 
LMP interval 

R = 0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1 

A [15.24, 16.98] [15.65, 15.83] [14.00, 15.23] [14, 14] [14, 14] [14, 14] 
B [23.68, 28.18] [23.68, 25.00] [19.39, 22.29] [18.51, 25.00] [18.51, 25.00] [18.51, 25.00] 

C [26.70, 30.00] [26.70, 27.67] [21.47, 25.00] [20.24, 25.00] [20.24, 25.00] [20.24, 25.00] 

D [35.00, 39.94] [35, 35] [27.17, 32.46] [25, 25] [25, 25] [25, 25] 

E [10, 10] [10, 10] [10, 10] [10.66, 11.68] [10.66, 11.68] [10.66, 11.68] 

4. Conclusion 
This paper presents an approach to determine the 

intervals of locational marginal prices (LMPs) based on  
bi-level optimization model. Moreover, authors also 
present the conversion of this model to a mathematical 
program with equilibrium constraints (MPEC), then to a 
mixed-integer linear programming (MILP), which can be 
easily solved by available software tools. The results of this 
bi-level optimization problem reveal that the wind 
uncertainty and the demand-bid price sensitivity level have 
a remarkable impact on LMP intervals. In the 
computational aspect, the bi-level optimization-based 
method is more efficient compared with Monte-Carlo 
simulations although the calculated results using both 
approaches are identical. 
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Abstract—The Transient Stability-Constrained Optimal Power Flow
(TSC-OPF) is a challenging optimization problem, and is the subject
of several recent researches. This paper proposes a novel approach
to solve TSC-OPF. In the proposed framework, Support Vector
Machines (SVMs) are used to classify whether an operating condi-
tion satisfies predefined transient contingencies. A novel classifica-
tion strategy is proposed to ensure the optimal solution satisfies all
considered contingencies with certain security margin. Besides, the
weight coefficients of the SVM are used as sensitivity measures in
order to help optimization solver find solutions more effectively. The
proposed approach is demonstrated for the New England system and
the IEEE 300 bus system.

1. INTRODUCTION

The power systems nowadays are operating closer to their
stability limits. As a consequence, the risk of various insta-
bility phenomena is now higher. The power system stabil-
ity requires more attention during the production planning
and optimization procedures. If the stability constraints can
be incorporated into various operation planning problems
such as Optimal Power Flow (OPF) and Unit Commitment, it
would help power engineers determine operating conditions
which are optimal in terms of minimal cost, and are also
secure under probable contingency events. Due to the com-
plexity of the power system models, several types of instabil-
ity dynamics can occur. The power system dynamics and sta-
bility phenomena can be classified into three main categories:
Rotor angle stability, voltage stability, and frequency stability
[1]. The assessment of transient rotor angle stability requires
detailed time-domain simulation, which is a very computa-
tionally extensive process. An alternative to time-domain sim-
ulations is the transient energy function method [2]. In [3],
the transient energy-based data have been shown to improve
the accuracy of transient stability classification . However, the
energy function method is only directly applicable for simple
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model of the generator. The extension of this method for
higher-order model of the synchronous generator, with its
governor and excitation control, remains a challenge.

Transient stability-constrained optimal power flow (TCS-
OPF) is one research subject that has received increasing
attention [4–7]. The basic objective of TSC-OPF is to deter-
mine an optimal operating condition, in which the generators
can remain synchronized following severe contingencies.
This research topic is becoming more relevant in deregulated
markets, in which power system operating points are subject
to more variation and uncertainties. The method to solve
TSC-OPF problem is based on two main approaches. In the
first approach, the power system differential equations are dis-
cretized. The resulting finite difference equations are included
into the OPF problem as equality constraints. This approach
has been proposed in [7, 8], and also has been proposed for
the Transient Stability-Constrained Unit Commitment [9].
The main drawback of this approach is that the OPF problem
size is increased drastically, with only few contingencies
considered. Recent studies in this approach proposed to use
advanced computing platform to speed up the computation
time [10, 11].

In the second approach, the simulation of power system
dynamics is carried out separately from the OPF process. Dur-
ing the OPF, the transient stability boundary (TSB) is evalu-
ated using an independent simulation software [12, 13]. With
this approach, high-order model of power system dynamics
can be considered easily. In fact, a dedicated power system
simulation software can be used, which allows user to model
many different generator control systems. With this approach,
however, there is a need to derive an accurate sensitivity mea-
sure of the TSB with respect to optimization variables. The
sensitivity evaluation has been proposed in [13, 14], using a
finite difference method.

The above analysis shows that the second approach has
several advantages, especially when the TSC-OPF problem is
carried out for large-scale system comprising several types of
devices and control models. The main obstacle to improving
the efficiency of the second approach is how sensitivity mea-
sures can be accurately determined.

Along with TSC-OPF research, the approaches for TSB
approximation have also been studied. It has been shown in
earlier studies that artificial neural networks (ANNs) can esti-
mate with fairly high accuracy of the power system, critical
clearing times (CCTs)—a very commonly used measure for
TSB [15]. Besides the ANNs, other mediums for classifica-
tion are also proposed, such as polynomial representation, sup-
port vector machines (SVMs), least absolute shrinkage and
selection operator (LASSO), and ridge regression. If the CCT
can be represented as an analytical expression of load flow

variables, this function can be used as transient stability con-
straints in the TSC-OPF. This idea has been proposed first in
[16]. In fact, if ANNs can estimate with good accuracy the
TSB, then they can also give measures of sensitivity of the
TSB in function of their input. Therefore, a TSC-OPF frame-
work can be formulated, in which the TSBs with respect to
various disturbances can be described using different ANNs or
SVMs. The approach has several advantages: The TSC-OPF
problem size is only increased slightly compared to conven-
tional OPF formulation; moreover, the TSC-OPF can tackle
multiple contingency constraints very easily.

The benefit of having sensitivity measures of TSB with
regard to operating variables expands beyond the TSC-OPF
framework. During real-time operation, based on the mea-
sured input variables, power engineers can deduce accurate
dispatching orders that would mitigate the risk of proba-
ble insecure operating conditions. Some operating rules and
strategies can be deduced from the obtained ANN and SVM.

In this work, a new approach to solve TSC-OPF is pro-
posed. SVMs are trained to classify operating states based on
transient stability criterion, with several contingencies consid-
ered. In the OPF framework, the weight coefficients of the
SVM are used as a sensitivity measure to determine the search
direction. Compared to previous research [16], the SVM is
used as a classifier, instead of an approximator. With this
approach, the computation burden for the creation of train-
ing instances is significantly reduced. The paper is organized
as follows: Section 2 presents background on the mathemati-
cal formulation of TSC-OPF, and approaches to determine the
TSB based on ANN and SVM. Section 3 presents the pro-
posed approach to solve TSC-OPF based on SVM. Some test
results are presented in Section 4, and conclusions are given
in Section 5.

2. BACKGROUND

2.1. Transient Stability-Constrained Optimal
Power Flow

The conventional OPF problem can be described as follows:

f (Pg) → min (1)

such that:

Pg − PL − P(V, θ ) = 0 (2)

Qg − QL − Q(V, θ ) = 0 (3)

Vmin ≤ V ≤ Vmax (4)



Nguyen-Duc et al.: An Approach to Solve Transient Stability Constrained Optimal Power Flow Problem 3

Pg.min ≤ Pg ≤ Pg.max (5)

Qg.min ≤ Qg ≤ Qg.max (6)

Constraints (2–3) represent the network power flow
equations, and constraints (4–6) represent the physical
limits of optimization variables. Transient Stability OPF (or
security-constrained OPF in general) extends the OPF formu-
lation by adding constraints related to the stability criteria.
At a given operating point, the maximum clearing time for
all faults must be higher than a specified value, determined
by relay response and circuit breaker time, with some safety
margin. In an analytical form, these criteria can be expressed
as

CCTk (Pg, Qg,V, θ ) ≥ CCTmin, k = [1, N] (7)

where k denotes the kth contingency, and N is the total number
of contingencies considered. The threshold CCTmin in Eq. (7)
denotes a minimum required value for the CCT, which must be
at least longer than the operating time of the protective relay-
ing system and circuit breaker time, plus some security mar-
gin. There is, however, no analytical function for CCT, since
time-domain simulations need to be carried out to determine
the values of CCT.

2.2. Approximation of Transient Stability Boundary
Using Neural Networks

There have been extensive works on the approximation of the
TSBs using NNs. In most cases, the CCT is chosen as the
transients stability boundary [15]. Reference [17] shows that
an ANN with generator active and reactive output as input
space can estimate with very high accuracy the CCT of a sin-
gle machine infinite bus system. Reference [18] proposes to
use a Multi layer Perception Network to estimate the CCT of
the IEEE 39 bus system, with good accuracy. Study in [19]
showed that with bus voltages and angles as input features,
the SVM can estimate with high accuracy the system CCT.
Instead of using ANN to estimate the CCT of operating con-
ditions, one can also train the ANN and other alternative artifi-
cial intelligence engines to classify whether an operating con-
dition will be transiently stable with a given fault. Reference
[20] is one of the first studies in this approach, in which an
SVM is used as a classifier.

Researches on the approximation of CCT have proposed
several combinations of load flow variables as input vec-
tors for the ANN, such as active and reactive power output
(Pg, Qg), and bus voltage magnitudes and angles (Vm, Va).
Overall, the generator active output (Pg) and either generator
voltage or reactive output (Vg or Qg) are commonly chosen as

input variables. In fact, there are good reasons to use these two
inputs:

� Pg has a quasi-linear relationship with regard to the
TSB. This can be explained easily using the equal area
criterion [8].

� A generator set point voltages Vg also have a small effect
on the CCT of the three-phase fault at its terminal. This
can be quantitatively explained using the equal area cri-
terion [19]: High set point voltage requires high field cur-
rent, which leads to higher value of transient e.m.f (E ′

q).
As a result, the decelerating areas tend to be larger.

� In OPF and optimal commitment problems, Pg and Vg are
the control variables.

2.3. Support Vector Machines

As discussed in the previous section, recent works have
focused on using various artificial intelligence engines such
as ANN, SVM, LASSO, and ridge regression to estimate the
TSB [16, 20, 21]. In most researches, the CCT is used as a
TSB. For the purpose of classification, the SVMs are often
used. The idea of a linear SVM can be described briefly as
follows:

f (x) = sign(wT x + b) (8)

This classifier separates the input feature space into two
classes by a hyperplane. One class corresponds to f (x+) = 1,
and the other class corresponds to f (x−) = −1. The vector w
is called the weight vector, and b is the bias term. The mini-
mum distance between two input values belonging to two dif-
ferent classes is

mD(x) = wT (x+ − x−) = 2

‖w‖ (9)

The task of training the SVM is to maximize the margin
2

‖w‖ , which is equivalent to minimizing ‖w‖. The optimization
problem is formulated as follows:

min
w,b,ξ

1

2
wT w + C

l∑
i=1

ξi (10)

subject to: {
yi(wT φ(xi) + b) ≥ 1 − ξi

ξi ≥ 0
(11)

The slack variables ξi are introduced in the optimiza-
tion problem, in order to allow some misclassification. The
coefficient C in (10) is used as a penalty factor for classi-
fication errors. In Eq. (11), the function φ(x) represents a
nonlinear mapping, which maps the input vector x into a
higher-dimensional space. With an appropriate selection of
the kernel function, the classification problem can be linearly
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FIGURE 1. Concept of SVMs. The optimal hyperplane sep-
arates two classes of instances: square and circle. The dark
filled instances are called support vectors.

separable in the new higher dimensional space. Without loss
of generality, the concept of SVM can be illustrated in case of
a linear kernel function, as shown in Figure 1. The obtained
optimal hyperplane separates the input space with a maximum
possible margin. Instances which satisfy wT x + b > 1 and
wT x + b < −1 belong to classes “+1” and “−1,” respectively.
The instances for which wT x + b = ±1 are called the support
vectors. The weight coefficients w reveal the importance of
input variables. Some misclassification can be tolerated by
adjusting the penalty on error term C in Eq. (10). Compared
to other classifiers, such as ANNs, the SVM has several
advantages: it is based on Sequential Quadratic Program-
ming, which yields unique solution, without issues with local
minima. [22].

3. PROPOSED FRAMEWORK

An important parameter for the training of SVM is the soft
margin constant C in Eq. (10). For linearly separable data,
there exists a linear boundary that separates samples belong-
ing to “−1” class and those belonging to “+1” class. However,
in practical classification problems, data are often not separa-
ble (even with nonlinear kernels). Hence, the soft margin term
C and the error margin ξ are introduced to allow a certain
misclassification.

It is necessary at this point to discuss whether the problem
of CCT classification in power systems is separable. Refer-
ence [19] has proved that for a Single Machine Infinite Bus
system, where the generator is modeled by constant transient
voltage (E ′

g) behind transient reactance (X ′
d), there exists an

analytical function of the CCT with respect to pre-fault active
power and E ′

g. Hence, a classification engine can be deduced

with 100% accuracy. The above observation can be extended
to multimachine case. However, the CCT of one machine can
also depend on the power output of nearby generators.

Another problem associated with CCT estimation accuracy
is the use of simulation time step. For best the CCT estima-
tion accuracy, a small simulation time step is needed. Conse-
quently, the process of CCT estimation will take a lot of com-
putation time. To achieve a compromise between accuracy and
computation burden, a variable time step solver is required, as
proposed in previous research [23].

The above analysis shows that with proper selection of
input features, the CCT approximation problem can be done
with 100% accuracy, i.e. the CCT classification problem might
be separable using SVM. However, doing so would require
small integration time step solvers, large input space, and also
a highly nonlinear kernel function and activation function, if
SVM and ANN are used respectively.

On the other hand, in the determination of CCT, a certain
security margin is often tolerated. For example, if the power
system operating condition can guarantee a CCT CCTi = T0 +
εi for all contingencies i, and εi are small security margins, the
operating condition can be considered secure.

The above analysis has led to the proposed framework for
this paper, which could be stated as follows: Find the optimal
operating point for a power system, in which all contingencies
must have CCTs that satisfy:

CCTi = CCTmin,i + εi (12)

where CCTi is the actual clearing time for contingency i;
CCTmin,i is its minimum allowable value, and εi is a posi-
tive security margin that is bounded: εi ≤ ε0. The flowchart
for the creation of training instance is depicted in Figure 2.
Instances with CCT greater than CCTmin,i + ε0 are labeled as
“+1,” whereas instances with CCT smaller than CCTmin,i are
labeled as “−1”. The criteria for determining whether a simu-
lation is stable or non-stable are based on the angle difference
between each machine and the center of inertia (COI) angle

δi(ts) −
∑ng

k=1 Hkδk (ts)∑ng
k=1 Hk

≤ 100◦, k = 1, . . . , ng (13)

where ts is a predefined simulation time. The angle thresh-
old of 100◦ for transient stability evaluation is often used in
the literature [24]. This criterion is quite conservative, but it
allows to account for both first-swing and multi-swing insta-
bility. To account for multi-swing instability, one can simply
choose a longer simulation time ts. The specific value of ts
depends on the dynamic performance of each system. If the
studied system exhibits poor damping of power oscillations,
multi-swing instability might occur [25], and consequently a
longer ts should be used.
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FIGURE 2. Framework for the creation of training instances.

As can be seen in Figure 2, since the training instances
from two classes have CCT difference of at least ε0, the clas-
sification accuracy can be improved significantly. This frame-
work is applied to train SVM for all considered contingencies
in the TSC-OPF problem. Each contingency constraint is rep-
resented by a single SVM. Assuming a linear SVM is used,
the corresponding Transient Stability criteria to be included
in the TSC-OPF formulation are as follows:

wi
T x + bi ≥ 0 (14)

where wi and bi are the weight vector and bias obtained after
training the SVM for contingency i, and x is the vector of opti-
mization variables. Hence, each transient stability constraint is
represented by a single additional constraint in the OPF for-
mulation. The proposed framework has the following advan-
tages compared to previous approaches to solve TSC-OPF:

� Each transient stability constraint is represented by a sin-
gle additional constraint. Therefore, the computational
burden of the TSC-OPF does not increase considerably,
compared to the conventional OPF.

FIGURE 3. Illustration of the proposed classification
approach: If one performs a classification between instances
with CCT ≤ 100 ms and those with CCT ≥ 100 ms, the result-
ing separating hyperplane is 1, with quite a few errors. On the
other hand, if a classification is made between instances with
CCT ≤ 100 ms and those with CCT ≥ 105 ms, the result-
ing hyperplane is now 2, which separates with much higher
accuracy.

� With a tolerance ε0, the classification accuracy can be
improved significantly. With a sufficiently large ε0, the
classification error can be reduced to 0%. In fact, a small
tolerance (5–10 ms) is chosen in this work, to guaran-
tee the stability of the OPF solution without too much
conservativeness. As can be seen in Figure 3, the pro-
posed classification approach can guarantee a higher
security margin. All samples in the right-hand side of
the hyperplane 2 have CCT of at least CCTmin. If the
resulting hyperplane becomes a binding constraint in the
TSC-OPF problem (hence, the optimal solution should
lie in the hyperplane 2), the optimized operating condi-
tion will most likely have a CCT between CCTmin and
CCTmin + ε0. One important parameter for the database
generation and training is the selection of the parameter
ε0. Increasing ε0 will improve the classification accuracy,
but also will make the classification engine more conser-
vative. The choice of ε0 should be decided by the power
system planning engineer, considering the required sta-
bility margin as well as the required reliability in tran-
sient stability evaluation.

� The approach using classification would require less
training samples than the approach using approximation,
as in [16, 26], since it is not needed to determine the
exact value of CCT. Only two simulations are needed to
determine the label for a training instances. As a result,
the transient stability evaluation can be done faster than
CCT-based approaches, which would require 4–5 simu-
lations [27].
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� The approach can tackle both first-swing and multi-
swing instability. To deal with multi-swing instability,
one can choose a longer simulation time.

4. TEST RESULTS

4.1. The IEEE 39 Bus (New England) System

The proposed framework is first applied for the New England
system, with 10 generators and 39 buses. For training samples,
generator’s output and load demand are varied randomly as in
the following equations:

Pi
L(k) = Pi

L.[1 + 2�P.(0.5 − εPL(k))] (15)

Qi
L(k) = Qi

L.[1 + 2�Q.(0.5 − εQL(k))] (16)

P j
G(k) = P j

G.[1 + 2�PG.(0.5 − εPG(k))] (17)

V j
G (k) = V j

G.[1 + 2�VG.(0.5 − εVG(k))] (18)

The transient stability contingencies considered in this
work are three-phase faults at generators’ terminals. The pro-
posed data generation and training method are applied to each
contingency considered. With each fault, a total of 500 oper-
ating conditions are created randomly using Eq. (15). Each
operating condition is checked for limit violations and then
its transient stability is evaluated using the framework in
Figure 2. For input features, the generators active and reac-
tive output are selected. Classification results obtained with
different input and kernel functions are shown in Table 1. The
LibSVM package [28] has been used for training and testing
of SVM.

The result presented in Table 1 has shown that a linear
classifier can be enough for the classification of CCT, with
proper selection of ε0. Although a nonlinear kernel can give
100% classification accuracy, the implementation of its corre-
sponding analytical function in the form of Eq. (7) is much

Input Kernel type Margin ε0 (ms) Accuracy (%)

Pg Linear 2 97.36
Pg Linear 5 97.97
Pg Linear 10 98.31
Pg Polynomial 10 100.0
Pg, Qg Linear 5 99.02
Pg, Qg Linear 10 99.25

TABLE 1. Classification accuracy with different ε0 and kernel func-
tions, machine G7

Gen. Desired CCT (ms) ε0 Actual CCT (ms)

3 200 10 208.6
5 180 10 180.5
7 190 10 194.3
8 200 10 208.0
9 100 5 108.6

TABLE 2. TSC-OPF result for single contingency

more complicated than with a linear kernel. The same test has
been carried out for other generators faults, with quite similar
result.

With the transient stability criterion being represented
by one linear constraint, obtained from the trained SVM,
a TSC-OPF framework can be formulated. With each fault
considered in the TSC-OPF, the corresponding generator’s
production cost is deliberately reduced to a small value. As a
result, the TSC-OPF will try to increase this generator active
power, so that transient stability will be reduced. Therefore,
the transient stability constraint of this generator in the form of
Eq. (7) will become a binding constraint. The CCT of the opti-
mal solution (which should be CCTmin) is then re-evaluated to
determine the effectiveness of the proposed algorithm. This
procedure is carried out for 5 generators: 3, 5, 7, 8 and 9.

Table 2 presents the CCTs of 5 different TSC-OPF solu-
tions, each was run with one single contingency constraint.
Table 3 presents the CCT results of the TSC-OPF solution
obtained when the transient stability constraints for all 5 con-
tingencies are considered. In all cases, it can be seen that
the proposed algorithm yielded OPF results that satisfied
all transient stability constraints, within the predefined error
boundary.

The stabilizing effect of the TSC-OPF is also verified
by time-domain simulation. Figure 4 shows system speed
responses with a 200-ms fault at generator 8 terminal. This
is a multi-swing instability contingency. As can be seen in
Figure 4(b), the optimal operating condition obtained from the
TSC-OPF is stable with this fault.

Gen. Desired CCT (ms) ε0 Actual CCT (ms)

3 200 10 202
5 180 10 189
7 190 10 198
8 200 10 203
9 100 5 102

TABLE 3. TSC-OPF result with multiple contingency constraints,
case New England
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FIGURE 4. Speed responses with a 200-ms three-phase fault
at generator 8. (a) Speed response of 200-ms fault at gener-
ator 8, OPF solution. (b) Speed response of 200-ms fault at
generator 8, TSC-OPF solution.

OPF TSC-OPF

Gen. Pg Qg Pg Qg

1 613.29 140.00 421.42 140.00
2 616.71 300.00 618.59 145.86
3 725.00 300.00 693.34 277.57
4 599.15 108.50 604.35 182.70
5 508.00 140.87 496.91 167.00
6 603.44 216.02 537.62 122.27
7 580.00 59.71 580.00 127.52
8 564.00 2.40 553.42 137.75
9 865.00 34.44 850.40 49.77
10 631.04 101.67 943.35 − 11.59

Obj. ($/h) 1.99E+04 2.22E+04

TABLE 4. Load flow result, TSC-OPF vs OPF, case New England

Table 4 compares the generator active and reactive output
of OPF and TSC-OPF solutions. Dispatch results for the con-
cerned generators are shown in bold. The results also reveal
the re-scheduling effect of TSC-OPF. Apart from generator
3, all other considered generators increase their reactive out-
put in the TSC-OPF solution. This could be explained by the

FIGURE 5. Verification of transient stability criteria at gen-
erator 21 bus. (a) Speed response with 200-ms fault at G21,
OPF solution. (b) Speed response with 200-ms fault at G21,
TSC-OPF solution.

fact that higher field current tends to increase the CCT, as dis-
cussed in Section 2.2. It is also worth noting that generator
7 does not need to reduce its active output at all in order to
satisfy the stability constraints. This result shows that besides
generator active power, which is an obvious control variable
in generation re-scheduling to satisfy transient stability con-
straints, the generator reactive output can also be used.

4.2. The IEEE 300 Bus System

The proposed TSC-OPF approach is also applied for the IEEE
300 bus system. The load flow and generator cost data for
this system are available in MATPOWER [29]. The dynamic
data for this system were created with IEEE AC4A excitation
model and TGOV1 governors. The contingencies considered
for this system are 3-phase faults at generators 6, 20, 21, and
40. A CCT margin of 8 ms is chosen for all generator con-
tingencies. After the TSC-OPF solution is obtained, the CCT
of all contingencies is verified with time-domain simulations.
Figure 5 shows time-domain simulation results of the three-
phase fault at bus 21, with OPF and TSC-OPF solutions.

The CCT of all considered contingencies are shown in
Table 5. It can be seen that the TSC-OPF solution satisfies all
transient stability constraints, with relatively small margins.
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Gen. Target CCT (ms) ε0 Actual CCT (ms)

6 140 8 140.6
20 140 8 146.0
21 200 8 202.6
40 120 8 121.4

TABLE 5. TSC-OPF result with multiple contingency constraints,
case IEEE 300

Two application examples for the New England system and
the IEEE 300 bus system show that with the proposed frame-
work, both first-swing and multi-swing stability constraints
can be considered.

5. CONCLUSION

This paper presents a novel approach to solve TSC-OPF prob-
lem. In the proposed framework, the SVM are used to classify
contingencies. With the proposed approach for CCT classifi-
cation, it can be guaranteed that the optimal solution of the
TSC-OPF will satisfy the required minimum CCT, with some
predefined positive security margin. The approach has sev-
eral advantages: Compared to the previous approach based on
CCT approximation, the training time for SVM is significantly
reduced. The proposed approach can tackle multicontingency-
constrained OPF. Moreover, the transient stability constraints
are described as linear constraints. Therefore, the additional
computational burden is negligible. It is worth noting that the
implementation of TSC-OPF based on commercial software
is quite simple, since several commercial OPF solvers such as
PSS/E already support the inclusion of additional constraints
in linear form.

Besides the transient stability constraints based on criti-
cal fault clearing time, the proposed approach can also be
expanded to consider other types of constraints, such as those
related to voltage stability and small signal instability. This
will be the subject of the authors’ future research.
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Abstract - This paper presents multi-period linearized optimal 
power flow (MPLOPF) with the consideration of transmission 
network losses and Thyristor Controlled Series Compensators 
(TCSC). The transmission losses are represented using piecewise 
linear approximation based on line flows. In addition, the 
nonlinearity due to the impedance variation of transmission line 
with TCSC is linearized deploying the big-M based complementary 
constraints. The proposed model in this paper is evaluated using 
PJM 5-bus test system. The impact of a variety of factors, for 
instance, the number of linear blocks, the location of TCSC and the 
ramp rate constraints on the power output and locational marginal 
price (LMP) is also analyzed using this proposed model. 

Key words - Multi-period linearized optimal power flow (MPLOPF); 
mixed-integer linear programming (MILP); transmission losses; 
Thyristor Controlled Series Compensators (TCSC); big-M 

1. Introduction 

Electricity networks around the world are experiencing 

extensive change in both operation and infrastructure due 

to the electricity market liberalization and our increased 

focus on eco-friendly generation. Managing and operating 

power systems with considerable penetration of renewable 

energy sources (RES) is an enormous challenge and many 

approaches are applied to cope with RES integration, 

mainly the management of intermittency. In addition to 

increasing power reserves, energy storage systems (ESS) 

can be invested to mitigate the uncertainty of RES. The 

increasing application of ESS as well as problems 

including time-coupled formulations such as power grid 

planning, N-1 secure dispatch and optimal reserve 

allocation for outage scenarios have led to extended 

optimal power flow (OPF) model referred to as multi-

period OPF problems (MPOPF) [1]-[2]. 

Typically, the MPOPF problem is approximated using the 

DC due to its convexity, robustness and speed in the electricity 

market calculation [3]. To improve the accuracy of the 

MPOPF model, transmission power losses have been 

integrated. This is significant because the losses typically 

account for 3% to 5% of total system load [4]. When power 

losses are incorporated in the MPOPF model, this model 

becomes nonlinear. To address the nonlinearity, reference [3] 

deploys the iterative algorithm based on the concept of 

fictitious nodal demand (FND). The disadvantage of this 

approach is that the MPOPF problem must be iteratively 

solved. Reference [5] presents another approach in which 

branch losses are linearized. The branch losses can be 

expressed as the difference between node phase angles or line 

flows [4]. The main drawback of this model is that it can lead 

to “artificial losses” without introducing binary variables [5]. 

Moreover, the TCSC is increasingly leveraged in power 

systems to improve power transfer limits, to enhance 

power system stability, to reduce congestion in power 

market operations and to decrease power losses in the grid 

[6]. When integrating TCSC in the MPOPF problem, this 

model becomes nonlinear and non-convex since the TCSC 

reactance becomes a variable to be found [7]. At present, 

there are several strong solvers like CONOPT, KNITRO 

for solving this nonlinear optimization problem [8]. 

However, directly solving nonlinear optimization 

problems cannot guarantee the global optimal solution. 

References [9]-[10] demonstrate the relaxation technique 

to solve the nonlinear optimization problem in power 

system expansion planning considering TCSC investment. 

Furthermore, the iterative method is used to determine 

optimal parameter of TCSC in reference [11]. 

The main contributions of the paper are as follows: 

- Combining different linearized techniques to convert 

the nonlinear MPOPF to the mixed-integer linear MPOPF. 

- Analysing the impact of some factors such as the 

number of loss linear segments, the location of TCSC as 

well as the ramp rate of the units on the locational marginal 

price (LMP) and generation output. 

The next sections of the article are organized as 

follows. In section 2, the authors present general 

mathematical formulation of multi-period optimal power 

flow (MPOPF) model incorporating losses and TCSC. The 

different linearization techniques are specifically presented 

in section 3 and 4. Section 5 demonstrates multi-period 

linearized optimal power flow (MPLOPF) model. The 

simulation results, numerical analyses of PJM 5-bus 

system are given in section 6. Section 7 provides some 

concluding remarks. 

2. General mathematical formulation 

For normal operation conditions, the node voltage can 

be assumed to be flat. A multi-period optimal power flow 

(MPOPF) considering network constraints can be modeled 

for all hour t, all buses n, all generators i, and all lines (s, r) 

as follows: 
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 ( ) ; ,lb ub
gi gi giP P t P i I t T       (5) 

 ( ) ( )1 ; ,up
gi gi iP t P t R i I t T− −       (6) 

 ( ) ( )1 ; ,dn
gi gi iP t P t R i I t T− −       (7) 

The objective function in (1) represents the total 

system cost in T hours (here, T = 24 h). The constraints 

(2) enforce the power balance at every node and every 

hour. The constraints (3) enforce the line flow limits at 

every hour. The constraints (4) and (5) are operating 

constraints that specify that a generator’s power output as 

well as power output of each energy block must be within 

a certain range. The other constraints included in the 

formulation above are the ramp-up constraints (6) and 

ramp-down constraints (7). 

If the reactance of branch xsr is taken as a variable due 

to TCSC installation, in the range of 
min max[ , ]sr srx x , it yields 

a new model: 

 ( ) ( )
( )

, ,
min , . ,

sr
i

gi gi
P x

t T i I b G t

b t P b t



  

   (8) 

Subject to 

 
min max
sr sr srx x x   (9) 

 ( ) ( )2 7−  (10) 

The above general model is nonlinear. Sections 3 and 4 

present different linearization methods to convert this 

model to the linear form. 

3. Linearization of the network losses 

In this section, the subscript t is dropped for notational 

simplicity. However, it could appear in every variable and 

constraint. Additionally, the expressions presented below 

apply to every transmission line; therefore, the indication 

( ), ls r  will be explicitly omitted. 

The real power flows in the line (s, r) determined at bus 

s and r, respectively, are given by 

( ) ( ) ( ), 1 cos sinsr s r sr s r sr s rP G B      = − − − −   (11) 

( ) ( ) ( ), 1 cos sinrs s r sr s r sr s rP G B      = − − + −   (12) 

The real power loss in the line (s, r), ( ),loss
sr s rP   can 

be attained as follows: 

( ) ( ) ( ) ( )
2

, , ,loss
sr s r sr s r rs s r sr s rP P P G       = +  −  (13) 

In the lossless DC model, the real power flow in the line 

(s, r) at bus s is approximately calculated as in (14): 

 ( ) ( ) ( )
1

,sr s r sr s r s r
sr

F B
X

      − − = −  (14) 

Substituting (14) in (13), the real power loss in the line 

(s, r) is expressed as in (15): 

( ) ( )
( )

2 2

2
,

1 /

loss sr
sr s r sr sr sr sr

sr sr

R
P G X F F

R X
  = =

+
 (15) 

Equation (15) can be further simplified. The resistance 

Rsr is usually much smaller than its reactance Xsr, 

particularly in high voltage lines. Consequently, (15) can 

be further reduced to (16) 

 ( ) 2,loss
sr s r sr srP R F  =  (16) 

The first advantage of (16) compared to (13) is that 

power flows in lines neither built nor operative are zero. 

Another advantage of (16) is its possible application to 

model losses in HVDC lines. 

The quadratic losses function (16) can be expressed 

using piecewise linear approximation according to 

absolute value of the line flow variable as follows: 

 ( ) ( ) ( )
1

,
L

loss
sr s r sr sr sr

l

P R l F l  
=

=   (17) 

To complete the piecewise linearization of the power 

flows and line loss, the following constraints are necessary 

to enforce adjacency blocks: 

 ( ) ( )max. ; 1,..., 1sr sr srl p F l l L   = −  (18) 

 ( ) ( ) max1 . ; 2,...,sr sr srF l l p l L −  =  (19) 

 ( ) ( )1 ; 2,..., 1sr srl l l L  − = −  (20) 

 ( ) 0; 1,...,srF l l L =  (21) 

 ( )  0;1 ; 1,..., 1sr l l L  = −  (22) 

Constraints (18) and (19) set the upper limit of the 

contribution of each branch flow block to the total power 

flow in line (s, r). This contribution is non-negative, which 

is expressed in (21) and limited upper by 
max /ub
sr srp P L = , 

the “length” of each segment of line flow (18). A set of 

binary variables ( )sr l is deployed to guarantee that the 

linear blocks on the left will always be filled up first; 

therefore, this model eliminates the fictitious losses. Finally, 

constraints (22) state that the variables ( )sr l are binary. 

A linear expression of the absolute value in (17) is 

needed, which is obtained by means of the following 

substitutions: 

 sr sr srF F F+ −= +  (23) 

 sr sr srF F F+ −= −  (24) 

 ( )0 1 ub
sr sr srF P−  −  (25) 

 0 ub
sr sr srF P+   (26) 

In (24), two slack variables srF +
and srF −

 are used to 

replace Fsr. Constraints (25) and (26) with binary variable θsr 

ensure that the right-hand side of (23) equals its left-hand side. 

Moreover, the slopes of the blocks of line flow ( )sr l

for all transmission lines can be given by Eq. (27). 

 ( ) ( ) max2 1sr srl l p = −   (27) 

It is emphasized that the number of linear segments will 

radically affect the accuracy of the optimal problem 

solution. Moreover, this linear technique is independent of 

the reference bus selection and thereby eliminating 

discrimination in the electricity market operation. 

Using the above expressions, the real power flow in line 

(s, r) computed at bus s and r can be recast as follows, 

respectively: 
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( ) ( )

( ) ( )
1

1
, ,

2

1

2

loss
sr s r sr s r sr

L

sr sr sr sr

l

P P F

R l F l F

   


=

= +

= +
 (28) 

 

( ) ( )

( ) ( )
1

1
, ,

2

1

2

loss
rs s r sr s r sr

L

sr sr sr sr

l

P P F

R l F l F

   


=

= −

= −
 (29) 

The power withdrawn into a node n, ( ),nP t  can be 

written as 

 ( ) ( )
1:( , )

1

2l

L

n nk nk nk nk

lk n k

P R l F l F
=

 
= + 

 
   (30) 

A linear substitution for the function in (3) can be found 

by the following equivalent constraints without increasing 

the number of rows 

 ( ) ( )
1

1

2

L
ub

sr sr sr sr sr

l

R l F l F P
=

+   (31) 

Rewriting Eq. (31), the constraints (3) are expressed as 

follows 

 ( ) ( )
1

1
1

2

L
ub

sr sr sr sr

l

R l F l P
=

 
+  

 
  (32) 

4. Linearization of a bilinear function 

When xsr is taken as a variable, constraint (14) also 

makes the MPOPF model nonlinear since this constraint is 

a bilinear function. To overcome the nonlinearity of this 

constraint, we introduce a new variable Fsr, instead of 

variable xsr. After obtaining the optimal solution with 

variable (P, F, δ), the optimal reactance can be uniquely 

determined according to Eq. (33) 

 s r
sr

sr

x
F

 −
=  (33) 

Therefore, the constraint (9) becomes: 

 min maxs r
sr sr sr

sr

x x x
F

 −
 =   (34) 

It is noted that the sign of Fsr cannot be determined 

beforehand. Moreover, if the denominator Fsr is zero, the 

numerator s r − must be zero. As a result, (34) can be 

converted into the expression (35) depending on the sign 

of Fsr. 

 

min max

max min

0 .

0 0

0 .

sr sr sr s r sr sr

sr s r

sr sr sr s r sr sr

if F F x F x

if F

if F F x F x

 

 

 

   − 


= − =


  − 

 (35) 

These condition constraints can be combined by 

leveraging binary variables ysr and big-M based 

complementary constraints as follows [12]. In our model, M 

is taken to be / 2  due to system stability requirement [13]. 

( ) ( )

min max

max min1 1

sr sr sr s r sr sr sr

sr sr sr s r sr sr sr

My F x F x My

M y F x F x M y

 

 

− +  −  +

− − +  −  + −

(36) 

It is important to stress that linear technique using the 

above binary variable is exact while the linearized 

technique in Section 3 is approximately presented. 

5. Multi-period linearized optimal power flow 

(MPLOPF) model with losses and TCSC 

The MPLOPF model with losses and TCSC has the 

following form: 

 ( ) ( )
( )

, ,
min , . ,

i

gi gi
P F

t T i I l G t

b t P b t



  

   (37) 

Subject to 

( )
( )

( )
( )

( ) ( ) ( )

( ) ( )

: , : ,

1

:( , )

1 1

1
, ,

2
; ,

, ,

g d

l

gi dj

i i n M j j n M

L

nk nk nk nk

l

L L
k n k

nk nk

l l

P t P t

R l F l t F l t

n t

F l t F l t



 

+ −

=

 + −

= =

− =

 
 +  

 
  

  
+ −  
   

 




 

 (38) 

 ( ) ( ) ( )
1

1
1 , ,

2

L
ub

sr sr sr sr sr

l

R l F l t F l t P + −

=

   + +     
  (39) 

( ) ( ) ( )max, . , F , ; 1,..., 1sr sr sr srl t p F l t l t l L + −  + = −  (40) 

( ) ( ) ( ) max, , 1, . ; 2,...,sr sr sr srF l t F l t l t p l L+ −+  −  =  (41) 

 ( ) ( ), 1, ; 2,..., 1;sr srl t l t l L  − = −  (42) 

 ( ) ( ) ( )  , 0; , 0; , 0;1sr srF l t F l t l t+ −  =  (43) 

 ( ) ( ) ( )
1

0 , ; , ,
L

ub l
sr sr

l

F l t t P s r t T+

=

       (44) 

( ) ( ) ( )
1

0 , 1 ; , ,
L

ub l
sr sr

l

F l t t P s r t T−

=

  −        (45) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

min

max

max

min

1

1

sr sr sr s r

s r sr sr sr

sr sr sr s r

s r sr sr sr

My t F t x t t

t t F t x My t

M y t F t x t t

t t F t x M y t

 

 

 

 

− +  −

 −  +

− − +  −   


−  + −   

 (46) 

 ( ) ( )4 7−  (47) 

Regarding the computational complexity of the model, 

the number of continuous variable is 24. .GEN GEN
iN N

( )24. 1 2.24. .BUS LINN N L+ − +  and the number of binary 

variables is ( )24. . 1 2.24.LIN LINN L N− + . 

After the MPLOPF problem is solved, the marginal cost 

at the node i in hour t can be determined by the following 

expression [3]: 

. .i E i E l i l

l

LMP LMP LF LMP SF −= − +   (48) 

6. Results and discussions 

In this section, the multi-period linearized optimal 

power flow model is performed on the modified PJM 5-bus 

system [3]. The MPLOPF problem is solved by CPLEX 

12.7 [15] under MATLAB environment. 
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6.1. System data 

The test system is shown in Figure 1. The total peak 

demand in this system is 1080 MW and the total load is 

equally distributed among buses B, C and D. The daily load 

curve is depicted in Figure 2. Two small size generators on 

bus A have the capability to quickly start up. The ramp rate 

for the other generators is 50% of the rated power output [14]. 
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B C
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Center
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$14

600MW

$10

200MW

$35

520MW
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100MW

$15

 

Figure 1. PJM 5-bus system and generation parameters 

 

Figure 2. Daily load curve for PJM system 

6.2. Impact from the number of linear blocks 

Table 1. The effects of number of linear blocks  

Linear blocks Objective ($) Total losses (MW) Time (s) 

2 3844.43 316.69 1.71 

4 3824.04 244.83 2.97 

6 3822.96 238.56 5.28 

8 3820.70 230.41 8.42 

10 3820.55 229.49 12.35 

11 3820.51 229.49 14.61 

The number of linear blocks can significantly affect the 

solution time as well as the model accuracy listed in Table 

1. The key idea in this paper is to find the number of linear 

blocks which give the best balance between the model 

accuracy and the solution time. In this case, 10 is an 

appropriate number in terms of objective value, total losses 

and calcultaion time.  

6.3. Impact from losses 

Table 2 compares the results of power output at 10 AM 

using the proposed model. These results are also compared 

with those of POWERWORLD software using the ACOPF 

model [16]. When comparing to POWERWORLD 

software, the calculated results using the proposed model 

considering losses are more accurate and less different than 

that of the model neglecting losses.  

Table 2. Generating output results at 10 AM 

Bus Lossless (MW) Losses (MW) POWERWORLD (MW) 

A1 110 110 110 

A2 100 100 100 

C 19.95 30.1 27.83 

D 195.05 194.8 197.2 

E 600 600 600 

 

Figure 3. LMP at bus B at different hours without losses  

and with losses 

The results of LMP calculations at node B for 24 hours 

using the proposed model with and without losses are given 

in Figure 3. This figure illustrates that the effect of power 

losses on LMP is very little. This result is consistent because 

the power losses account for about 1% of the total load for 

this PJM 5-bus system, therefore the marginal generating 

units as well as congested lines are the same in both cases. 

6.4. Impact from TCSC location 

It is assumed that power losses are not considered and 

the ramp rate of the generating units (not including units 

at node A) are taken as 25% of the maximum power 

output. Also, the compensation level of TCSC varies from 

30% to 70%. 

Figure 4 depicts the power output of generator at node 

C for 24 hours for different locations of TCSC. During the 

period from 1 AM to 3 AM, the power output of the unit at 

node C nearly remains when the location of TCSC varies. 

In addition, the power output of this unit is highest in 24 

hours when TCSC is located in line A-B. 

 

Figure 4. The dependence of Generating output of  

Unit at bus C on TCSC location 

6.5. Impact from ramp rate constraints 

Figure 5 shows the power output of generator located 

at node C when changing the ramp rate of generators and 

it is assumed that TCSC is not applied to the power grid. 

From the 5 AM to 24 PM, the power output of this unit is 

the same for ramp rates of 25%, 35% and 50%. At the same 

time, the output of this unit is the highest for ramp rate 

100% of the maximum power. 

900

950

1000

1050

1100

0 5 10 15 20 25

Lo
ad

 (
M

W
)

Hour

20

25

30

35

0 5 10 15 20 25

L
M

P
 (

$
/M

W
h

)

Hour

Losses

Lossless

0

200

400

0 5 10 15 20 25

G
en

er
a

ti
o

n
 (

M
W

))

Hour

Line A-B

Line B-C



ISSN 1859-1531 - THE UNIVERSITY OF DANANG, JOURNAL OF SCIENCE AND TECHNOLOGY, NO. 6(127).2018 35 

 

Figure 6 depicts the effect of TCSC placement on the 

power output with different ramp rate scenarios at 10 AM. 

We see that the power output of generator at node C does 

not change as the ramp rate of the units changes in case of 

placing TCSC on line A-B. However, when TCSC is not 

installed, the ramp rate of units has a significant effect on 

the unit's output, increasing from 30,097 MW for the ramp 

rate of 50% to 223,37 MW for the ramp rate of 100%. Thus, 

using TCSC also reduces the impact of the ramp rate on the 

power output. 

 
Figure 5. The dependence of generating output of  

Unit at bus C on Ramp rate without TCSC  

 

Figure 6. The dependence of power output of  

Unit at bus C on Ramp rate with TCSC in line A-B at 10 AM  

7. Conclusion 

This paper presents multi-period linearized optimal 

power flow (MPLOPF) model based mixed-integer linear 

programming (MILP). This MPLOPF integrates line losses 

and Thyristor Controlled Series Compensator (TCSC). The 

different linearization techniques, such as piecewise linear 

approximation and big-M based complementary 

constraints are deployed to convert multi-period nonlinear 

OPF problem to multi-period linearized OPF model. The 

calculated results using the proposed model are compared 

to those of the commercial POWERWORLD software and 

this proves the validation of the proposed model. 

Additionally, the influences of the number of linear blocks, 

line losses, location of TCSC and ramp rate are analyzed. 

The results reveal that these factors can importantly impact 

on LMP, generating output of units as well as revenue of 

participants in electricity markets. 

NOMENCLATURE 

The main mathematical symbols used throughout this 

paper are classified below. 

Constants: 

( )sr l   Slope of the lth segment of the linearized power flow 

in line (s, r) 

( ),gi b t   Offered price of the bth linear block of the energy bid 

by the ith generating unit in hour t 

srB   Imaginary part of the admittance of line (s, r)  

srG   Real part of the admittance of line (s, r) 

srR   Resistance of the line (s, r) 

srX   Reactance of the line (s, r) 

( )djP t   Power consumed by the jth load in hour t 

L Number of the blocks of the loss linearization 
ub
srP   Transmission limit of line (s, r) 

ub
giP   

Upper bound on the power output of the ith producer 

lb
giP   

Lower bound on the power output of the ith producer 

up
iR   Ramp-up limit of the ith unit 

dn
iR   Ramp-down limit of the ith unit 

min
srx   Lower bound of the reactance of the line with TCSC 

max
srx   Upper bound of the reactance of the line with TCSC 

BUSN   Number of nodes 

GENN   Number of generators 

LINN   Number of transmission lines 

GEN
iN   Number of energy blocks of unit i 

Variables: 

( ),giP b t   Power output corresponding to the bth block of the 

ith unit in hour t 

( ),nP t   Power withdrawal at bus n in hour t 

( ),srP t   Power flow in line (s, r) at node s in hour t 

( ),rsP t   Power flow in line (s, r) at node r in hour t 

( )s t   Voltage angle at node s in hour t 

( )srF t   Power flow in line (s, r) in hour t without losses 

( ),loss
srP t   Power losses in line (s, r) in hour t 

( )sr l   Binary variable relating to the line flow linearization  

( )sry t   Binary variable corresponding the big-M based 

complementary constraints 

( )srx t   The reactance of the line with TCSC in hour t 

iLF   Loss factor at bus i 

l iSF −   Sensitivity of branch power flow l with respect to 

injected power i 

l   Shadow price of transmission constraint on line l 

Sets: 
I   Set of indices of the generating units 

( )iG t   Set of blocks energy bid offered by the ith unit in 

hour t 
N   Set of indices of the network nodes 

l   Set of transmission lines 
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Abstract - In the electricity market operation, calculating 
transmission charges is a critical issue. Transmission costs relate 
to the issue of how much is paid and by whom, for the use of 
transmission system. For short-run transmission charges, 
difference of location marginal prices (LMP) on a network branch 
has much influence on the market participants, including bilateral 
transactions. When there is congestion in power systems, 
difference of location marginal prices on the branch becomes 
bigger. One of the measures to overcome network congestion is 
using thyristor controlled series capacitor (TCSC). In addition, the 
presence of price-sensitive loads, bilateral transactions and 
requirement of active power reserves in power systems complicate 
matters associated with transmission charges in the wholesale 
electricity market. In this paper, a method for determining the 
optimal location of TCSC has been suggested and the impact of 
TCSC compensation levels  on transmission charges of bilateral 
contracts in the wholesale electricity market is analyzed. The 
calculated results are illustrated on a 6-bus system. 

Key words - Location marginal prices (LMP); wholesale power 
markets; transmission costs; active power reserves; bilateral 
transactions; thyristor controlled series capacitor (TCSC); AC 
optimal power flow (ACOPF). 

1. Introduction
Today, the electricity industry has changed from 

monopoly to competitive market mechanism in many 
countries around the world, including Vietnam. In the 
wholesale electricity market, the market participants are 
generation companies (GENCOS) and distribution 
companies (DISCOS). To maintain the frequency stability, 
sufficient active reserve must be ensured. Not only the 
reserve must be sufficient to make up for a generating unit 
failure, but the reserves must also be appropriately 
allocated among fast-responding and slow-responding 
units [5]. The reserve for frequency regulation is divided 
into 3 categories: regulation reserve (RR), spinning reserve 
(SR) and supplemental reserve (XR). Spinning reserve and 
supplemental reserve are  components of contingency 
reserve (CR). Operation reserve encompasses contingency 
reserve (CR) and regulation reserve [5]. The market 
operator collects generating offers (increase in price), 
reserve offers by producers, load bids (decrease in price) 
by consumers and reserve bids by the market operator and 
clears the market by maximizing the social welfare [1]. 
Then, power output of generation units, power output of 
buying units and reserve capacity of generator units may 
be determined by one of the following methods: 
sequentially optimizing energy and reserve; co-
optimization of energy and reserve [2]. Additionally, the 
firm bilateral and multilateral contracts are also 
incorporated into this optimization problem [3]. To make 
payments in the electricity market, location marginal price 
(LMP) are calculated. The difference in LMPs between 

two nodes of a branch is due to congestion and losses on 
that branch [4]. 

One of the measures to reduce the power flow on 
transmission lines congested is the use of Thyristor 
controlled series compensator (TCSC). The TCSC has 
many benefits, for instance, increasing power transfer 
limits, reducing power losses, enhancing stability of the 
power system, reducing production costs of power plants 
and fulfilling contractual requirements [6]. Moreover, the 
transmission charges of market participants and of bilateral 
transactions can be affected when installing TCSCs.  

Recently, there has been growing interest in allocation 
of FACTS devices for achieving diverse objectives for 
transmission network. The impact of thyristor controlled 
series compensator (TCSC) on congestion and spot pricing 
is presented in [8]. Priority list method for TCSC allocation 
for congestion management has been proposed in [9]. 
However, these works have not taken into account active 
power reserves. This paper proposes a simple and efficient 
approach to determine the optimal placement of TCSC to 
reduce congestion index of the power system. In addition, 
the impact of compensation level of TCSC on LMPs and 
transmission charges of bilateral transactions in the 
wholesale electricity market when co-optimizing energy 
and active power reserve is also analyzed. 

The next sections of the article are organized as 
follows. In section 2, the authors present optimization 
models to determine optimal placement of TCSC. 
Mathematical model of simultaneous optimization of the 
energy market and the active power reserve market,  as 
well as methods to calculate the LMP are presented in 
section 3. Section 4 presents the methods for determining 
transmission costs in the electricity market and 
transmission charges of bilateral transactions. The 
calculated example for a 6 bus power system is presented 
and compared in section 5. Some conclusions are given in 
section 6. 

2. Thyristor Controlled Series Capacitor (TCSC)
2.1. Static modeling of TCSC 

Figure 1 shows a simple transmission line represented 
by its lumped PI equivalent parameters connected between 
bus i and bus j. The real and reactive power flow from bus 
i to bus j can be written as [3]: 

( ) ( )2 cos sinij i ij i j ij ij ij ijP U G U U G B⎡ ⎤= − δ + δ⎣ ⎦   (1)

( ) ( ) ( )2 sin cosij i ij sh i j ij ij ij ijQ U B B U U G B⎡ ⎤= − + − δ − δ⎣ ⎦
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Figure 1. Model of transmission line 

With a TCSC connected between bus i and bus j, the 
real and reactive power flow from bus i to bus j of a line 
are [6]: 

( )2 ' ' 'cos sinC
ij i ij i j ij ij ij ijP U G U U G B= − δ + δ     (3) 

( ) ( )2 ' ' 'sin cosC
ij i ij sh i j ij ij ij ijQ U B B U U G B= − + − δ − δ  (4) 

( )
( )
( )

' '
2 22 2

; ij Cij
ij ij

ij ij C ij ij C

X XR
G B

R X X R X X

− −
= =

+ − + −
  (5) 

The change in the line flow due to series capacitance 
can be represented as a line without series capacitance, 
with power injected at the receiving and sending ends of 
the line as shown in Figure 2 [6]. 

ij ijR jX+
i iU∠δ j jU ∠δ

SiC SjC  
Figure 2. Injection model of TCSC 

The real and reactive power injections at bus i and bus 
j can be expressed as follow [6]: 

( ) ( )2 cos siniC i ij i j ij ij ij ijP U G U U G B⎡ ⎤= Δ − Δ δ + Δ δ⎣ ⎦   (6) 

( ) ( )2 cos sinjC j ij i j ij ij ij ijP U G U U G B⎡ ⎤= Δ − Δ δ −Δ δ⎣ ⎦   (7) 

( ) ( )2 sin cosiC i ij i j ij ij ij ijQ U B U U G B⎡ ⎤= − Δ − Δ δ −Δ δ⎣ ⎦  (8) 

( ) ( )2 sin cosjC j ij i j ij ij ij ijQ U B U U G B⎡ ⎤= − Δ + Δ δ + Δ δ⎣ ⎦  (9) 

 
( )

( ) ( )22 2 2

2C ij C ij
ij

ij ij ij ij C

X R X X
G

R X R X X

−
Δ =

⎡ ⎤+ + −⎢ ⎥⎣ ⎦

    (10) 

 
( ) ( )

2 2

22 2 2

C ij ij C ij
ij

ij ij ij ij C

X R X X X
B

R X R X X

⎡ ⎤− − +⎣ ⎦Δ =
⎡ ⎤+ + −⎢ ⎥⎣ ⎦

    (11) 

2.2. Optimal location of TCSC 
The severity of the system loading under normal cases 

can be described by a real power line performance index, 
as given below [3, 7], 

2

max
1 2

nNL
m Lm

m Lm

w P
PI

n P=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑          (12) 

where PLm is the active power flow on line m, max
LmP  is 

the limit of active power flow on line m. 

In this paper, the value of n has been taken as 2 (to avoid 
masking effect) and weighting factors wm = 1 (the 
importance level of lines is similar). 

To decrease congestion level of power transmission 
lines, TCSC should be placed in the line having the most 
negative sensitivity index bk which is calculated below [7]: 

0Ck

k
Ck X

PIb
X =

∂
=
∂

           (13) 

 
4

3
max

1

1NL
Lm

m Lm
Ck Ckm Lm

PPI w P
X XP=

⎛ ⎞ ∂∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑      (14) 

  

i i
mi mj

Ck CkLm

Ck ji i
mi mj

Ck Ck Ck

P P
SF SF m k

X XP
X PP P

SF SF m k
X X X

⎧ ⎛ ⎞∂ ∂
+ ≠⎪ ⎜ ⎟∂ ∂∂ ⎪ ⎝ ⎠= ⎨∂ ∂⎛ ⎞∂ ∂⎪ + + =⎜ ⎟⎪ ∂ ∂ ∂⎝ ⎠⎩

(15) 

where SFmi, SFmj is the sensitivity of branch power flow 
m with respect to injected power i and j, respectively. 

3. Co-optimization of Energy and active power reserves 
3.1. Objective function 

The objective function of co-optimization problem of 
energy and reserves in the wholesale electricity market is 
to minimize the total cost to supply minus total consumer 
benefit. This objective function is expressed as Eq. (16). 

( )

G Gi

G

DjD RR RR

CR OR

N N

Gib Gib
i 1 b 1

N
RR RR RR RR SR SR XR XR
Gi Gi Gi Gi Gi Gi Gi Gi

i 1
NN N N

RR RR RR RR
Djk Djk b b b b

j 1 k 1 b 1 b 1

N N
CR CR OR OR
b b b b

b 1 b 1

.P

.P .P .P .P

.P .A .A

.A .A

+ −

= =

+ + − −

=

+ + − −

= = = =

= =

λ

+ λ + λ + λ + λ

− λ − λ − λ

− λ − λ

∑∑

∑

∑∑ ∑ ∑

∑ ∑

(16) 

where λGib
 is price of the energy block b offered by 

generating unit i (constant), PGib is power of the energy 
block b offered by generating unit i (variable), RR

Gi
+λ is 

price of Up Regulation Reserve (RR) offered by generating 
unit i (constant), RR

Gi
−λ is price of Down Regulation 

Reserve offered by generating unit i (constant), SR
Giλ is price 

of Spinning Reserve (SR) offered by generating unit i 
(constant), XR

Giλ is price of Supplemental Reserve (XR) 

offered by generating unit i (constant), RR
GiP + is Up 

Regulation Reserve Power offered by generating i 
(variable), SR

GiP is Spinning Reserve Power offered by 

generating i (variable), XR
GiP is Supplemental Reserve 

Power offered by generating i (variable), Djkλ is price of 
the energy block k bid by demand j (constant), DjkP is 
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power block b bid by demand j (variable), RR
b

+λ is price of 
Up Regulation Reserve block b bid by Area (constant), 

CR
bλ is price of Contingency Reserve (CR) block b bid by 

Area (constant), OR
bλ is price of Operation Reserve (OR) 

block b bid by Area (constant), RR
bA + is Up Regulation 

Reserve Power block b bid by Area (variable), CR
bA  is 

Contingency Reserve Power block b bid by Area 
(variable), OR

bA is Operation Reserve Power block b bid by 
Area (variable). 
3.2. Constraints 
3.2.1. Network equations 

The state of a power system of n buses is determined by 
2n nodal equations: 

( )

( )
1

1

cos sin

sin cos

=

=

= − = δ + δ

= − = δ − δ

∑

∑

n

i Gi Di i j ij ij ij ij
k

n

i Gi Di i j ij ij ij ij
k

P P P U U G B

Q Q Q U U G B
  (17) 

3.2.2. Reserve balance 
For each area or zone, the reserve balance is shown 

according to the following expressions: 

1

+ +

=
=∑

GN
RR RR

Gi
i

P A            (18) 

1

− −

=
=∑

GN
RR RR

Gi
i

P A            (19) 

( )
1=

+ =∑
GN

SR XR CR
Gi Gi

i
P P A          (20) 

( )
1

+

=
+ + =∑

GN
RR SR XR OR

Gi Gi Gi
i

P P P A        (21) 

3.2.3. Limits on generating active power of block b 

( )max0 ,≤ ≤ ∀Gib GibP P i b          (22) 

3.2.4. Limits on generator power 
The limits on generator active and reactive power of 

power plants, considering all kinds of reserves are 
expressed as Eq. (23) – (24). 

( )max

min

0 +

−

≤ + + + ≤ ∀

− ≥

RR SR XR
Gi Gi Gi Gi Gi

RR
Gi Gi Gi

P P P P P i

P P P
    (23) 

min max≤ ≤Gi Gi GiQ Q Q                (24) 

3.2.5. Limits on reserve capacity of generating units 
These constraints are shown as the following equations 

(25) – (28): 

max0 RR RR
Gi GiP P+ +≤ ≤           (25) 

max0 RR RR
Gi GiP P− −≤ ≤           (26) 

max0 SR SR
Gi GiP P≤ ≤           (27) 

max0 XR XR
Gi GiP P≤ ≤           (28) 

3.2.6. Limits on elastic power of demand 
In the wholesale electricity market, load is often 

represented by two components: constant load and price-
sensitive load. Demand curve of the elastic demand can 
include multiple blocks and limits are expressed as Eq. (29) 
- (30). 

( )E min E max≤ ≤ ∀E
Dj Dj DjP P P j         (29) 

( )E max0 , k≤ ≤ ∀E
Djk DjkP P j         (30) 

where E
DjP is the elastic power of demand j 

3.2.7. Limits on Area reserve power of block b 
Area demand curves of reserve power can include 

several blocks and the MW size of each block, indexed by 
b, is expressed as Eq. (31) – (34). 

max0 + +≤ ≤RR RR
b bA A           (31) 

max0 − −≤ ≤RR RR
b bA A           (32) 

max0 ≤ ≤CR CR
b bA A            (33) 

max0 ≤ ≤OR OR
b bA A            (34) 

3.2.8. Spinning reserve percent constraint 
For each area or zone, the spinning reserve (SR) usually 

accounts for at least SR% of contingency reserve (CR). 
This is due to the fact that the spinning reserve can only be 
provided by online units. Meanwhile, supplemental reserve 
(XR) is provided by online or offline fast-start units. This 
constraint is written as follows: 

( )
1 1

%.
= =

≥ +∑ ∑
G GN N

SR SR XR
Gi Gi Gi

i i
P SR P P      (35) 

3.2.9. Branch flow limits 
Branch flow limits are expressed as Eq. (36). 

2 2 max0 ij ij ij ijS P Q S≤ = + ≤         (36) 

3.2.10. Voltage Limits 
min max
i i iU U U≤ ≤           (37) 

3.2.11. Limits on bilateral contracts 
When generating unit i and consumer j have a bilateral 

contract with contract power Pb, this constraint is expressed  
as equations (38)-(39): 

≥ b
Gi GiP P             (38) 

= + ≥E F b
Dj Dj Dj DjP P P P          (39) 

where F
DjP is the constant power of demand j, b

GiP is the 

amount of power contract of generating unit i, b
DjP is the 

amount of power contract of demand j. 
The above-mentioned AC-based optimal problem 

(ACOPF) be solved using successive linear programming 
(SLP) method [3]. 
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3.3. LMP Calculation and Components 
Location Marginal Price (LMP) is determined 

according to following equation [3]. 

. .i E i E l i l
l

LMP LMP LF LMP SF −= − + μ∑ (40) 

4. Transmission costs of bilateral transactions
The main objective of any transmission pricing method 

is to recover the transmission cost plus some profit. In 
order to recover operating costs, short-run marginal cost 
pricing (SMRC) based method is used in this paper [4]. 
SMRC is the difference in location marginal costs of 
supply bus and delivery bus. The location marginal costs 
of two buses can be determined from the solution of co-
optimization energy and active power reserves shown in 
section 3. The transmission cost of bilateral contracts can 
be calculated by multiplying the power transaction with 
SRMC to obtain SRMC-based transmission charge [4]. 

In addition, the transmission pricing associated with 
each line or group of lines is also calculated. This 
transmission cost depends the power flow on a line 
proportion to power being transmitted by each transaction 
and determined through the use the linear Power Transfer 
Distribution Factor (PTDF). The PTDF can be defined as: 

−
Δ

=
Δ

ij
ij mn b

mn

P
PTDF

P
 (41) 

where m and n are seller bus and buyer bus, ijPΔ is the 

change in power flow on line ij, b
mnPΔ is the change in 

power transfer of the bilateral transaction between m and 
n. 

These PTDFs, which are computed at the base load 
flow condition, are utilized for computing change in 
transmission qualities at other operating conditions as well. 
The transmission costs (TC) paid by bilateral transactions 
are calculated as (42) and (43). 

( )−= Δ −b b
ij ij mn j iTC P LMP LMP  (42) 

= ∑b b
ij

ij
TC TC  (43) 

where b
ij mnP −Δ is the change in power flow on line ij when 

a power transfer of the bilateral transaction is changed 
between m and n. 

5. Calculated results from a 6-bus system
5.1. Simulation Data 

This section presents the calculated results using a 6 bus 
power system [3]. The energy offer prices of generating 
units and bid prices of price-sensitive demands include 5 
blocks.  

In terms of bilateral trade, two different bilateral 
transactions are carried out: between bus 1 and bus 6 with 
a contractual capacity of 20 MW, denoted as T1 (1, 6, 20); 
between node 2 and node 5 with a contractual capacity of 
25 MW, denoted  as T2 (2, 5, 25).  

5.2. Optimal location of TCSC 
The calculated bk indices for the 6 bus system are 

shown in Table 1. From these results and the criteria for 
optimal location of TCSC expressed in section 2, TCSC is 
placed in line 2-6.  

Table 1. Sensitivity bk  

Line 
∂
∂

i

Ck

P
X

∂

∂
j

Ck

P
X kb

1-2 -0.8830 0.8107 0.2679 

1-4 -2.3154 2.2129 -0.8526 

1-5 -1.2294 1.1625 0.0957 

2-3 -0.0432 0.0401 0.0371 

2-4 -4.5384 4.2975 1.4579 

2-5 -0.6417 0.6118 -0.1375 

2-6 -1.4067 1.3546 -1.3442 

3-5 -0.9881 0.9188 -1.0195 

3-6 -5.4084 5.2152 3.7894 

4-5 -0.0713 0.0699 0.0456 

5-6 0.0192 -0.0222 0.0189 

When TCSC is located on the line 2-6, the impact of the 
control parameter of TCSC is shown in Figure 3. These 
results show that when the compensation level of TCSC is 
about 70% compared to the impedance of line 2-6, the PI 
index reaches the lowest value. 

Figure 3. Effect of compensation level on PI indexes 
5.3. Impact of TCSC on transmission cost  

Without TCSC, transmission charges of two bilateral 
transactions are given in Table 2. Table 2 shows that 
although the capacity of bilateral contract T1 is less than 
that of T2, transmission cost of  contract T2 is nearly 4 
times as high as that of T1. 

Table 2. Transmission cost of bilateral contracts 

Line 
LMPj - LMPi

($/MWh) 
T1 (1, 6, 20) T2 (2, 5, 25) 

(MW) ($/h) (MW) ($/h) 

1-2 0.36 8.37 3.012 -3.66 -1.319

1-4 0.83 6.35 5.271 -1.12 -0.928

1-5 1.67 5.82 9.719 4.46 7.448 

2-3 -1.36 3.10 -4.216 3.87 -5.263

2-4 0.47 -5.21 -2.447 4.70 2.209 
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2-5 1.31 0.00 0.000 7.12 9.327 

2-6 5.37 10.26 55.118 6.12 32.851

3-5 2.67 -2.54 -6.792 4.94 13.190

3-6 6.73 5.53 37.217 -0.99 -6.629

4-5 0.84 1.13 0.951 3.94 3.310 

5-6 4.06 4.21 17.076 -4.62 -18.78

Total transmission cost 114.9 $/h 32.4 $/h 

When TCSC is located on the line 2-6, the difference in 
LMP between node 2 and 5 (bilateral contract T2)  is lowest 
when the control parameter of TCSC is approximately 
52%. Additionally, the transmission charge of this 
transaction are given in Figure 4. 

Figure 4. Effect of compensation level on transmission cost of 
transaction T2 

Figure 5. The impact of seller bus on transmission cost 

The impact of the seller bus on transmission costs with 
different compensation levels is shown in Figure 5. The 
results show that with the same contractual capacity and 
the same compensation level, the position of seller bus can 
strongly affect  transmission costs of the bilateral 
agreements. 

6. Conclusion
This paper presents an approach to determine the 

optimal placement of TCSC to reduce congestion in the 
electric grid. Moreover, authors also presents the 
mathematical model of co-optimization problem of energy 
and active power reserve. The result of this optimization 
problem is location marginal price (LMP), the output 
capacity and reserve power of the generating units and the 
capacity of elastic loads. The influence of TCSC on LMPs, 
PI indices and transmission charges of bilateral agreements 
is also calculated and compared. 
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Abstract—This paper presents some results of our ongoing
research on the dynamic performance of the Vietnam power
system. The study involves simulations of N-1 events in the
500-220kV transmission system, especially the loss of an 500kV
circuit, which in reality has caused a large scale blackout in the
Southern grid of Vietnam, in May 2013. The simulations reveal
some interesting results, regarding the operation of transmission
line and generators protection systems. The sequence of relay
operation can change the course of a large scale event drastically.
The results provide us with new insight to revise relay settings
that helps reduce the risk of cascade tripping.

I. INTRODUCTION

The power system can be considered as one of the most so-

phisticated manufacturing process, involving several thousand

of elements. To ensure the reliability of the power systems,

the protection and control devices are needed to determine

and isolate quickly the faulty elements that could potentially

jeopardize the system security. Besides, good operating prac-

tices also contribute to the secure operation of power systems.

However, large disturbances causing cascading events still

occur, under some extra-ordinary circumstances.

Some of the most severe power grid failures in the recent

years include the North America blackout in 2003 [1], the Italy

blackout in September 2003 [2], the India power grid failure in

2012 [3]. Large scale cascading events normally originate from

a failure of an important component, which subsequently leads

to overloading of other component, causing cascaded tripping

[4]. The analysis of power system operating conditions to

determine critical contingencies is a very challenging task,

since there are a lot of contingency simulations involved. It

is not possible to eliminate totally the risk of blackout [4].

However, the understanding of the mechanism of cascading

events certainly provide valuable information for grid planners

and dispatchers, in order to reduce the risk of major grid

failures.

In the power system dynamics and stability literatures,

the mechanism of instability can be divided into three main

categories [5]: Voltage instability, frequency instability and

rotor angle instability. However, during the course of a large

scale cascading events, these dynamics often happen at the

same time. Besides, the performance of the protective relaying

system also plays a very important role. Under normal operat-

ing conditions, it is difficult to predict the interactions between

numerous protective and control devices in the system. For

this reason, the post-moterm analysis of the sequence of events

and the root cause of major grid failures helps reveal important

characteristic of the power system. This analysis helps improve

the power system planning, and the setting of protective relays.

This paper presents our initial simulation results of a major

grid blackout in Vietnam in May 22nd, 2013. The event

was initialized by a permanent fault on a 500kV line in

the Southern region of Vietnam. The tripping of this 500

circuit led to cascaded tripping of several other elements,

including generators and transmission lines. The cascaded

tripping separated the Southern grid from the North and the

Central grid, and voltage collapse occurred in the Southern

system. The methodology of this study is to carry out several

simulations of the power system, with different scenarios

(relay setting and loading condition), in order to find the most

probable sequence of events.

The paper is organized as follows: Section II present some

background information on the mechanism of blackout in-

volving voltage collapse. Section III present the simulation

models used in this study, including those of the generators,

generator control systems and protective relays. Section IV

presents typical simulation results. Some conclusion are given

in Section V.

II. POWER SYSTEM BLACKOUT AND VOLTAGE COLLAPSE

The blackout event in Vietnam in May 2013 was initialized

by a permanent short-circuit fault on a 500kV transmission

line. The tripping of this circuit has led to cascaded tripping

of other transmission lines and generating units, causing the

separation of the Southern grid from the Northern and Central

grid. After the separation, the Southern grid experienced

voltage collapse. The critical system condition caused several
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protection relays to trip, which eventually led to the blackout

in the Southern grid.

In many major power system disturbances and grid black-

out, the voltage collapse phenomenon is identified as one

important cause. A typical scenario for voltage collapse is as

follows [6], [7]:

• Following a loss of a power system element, such as an

important transmission line, or a large generating unit,

the other element of the system is overloaded, leading to

low voltage level at some system buses.

• Low voltage often leads to high current flows, which

leads to overloading of power system components. At

certain point, the overloaded component is tripped, which

propagates the overload problem to other elements of the

system.

• As the system elements are tripped, the lack of reactive

support becomes more severe. Some generator Over

Excitation Limiter relays may pick up.

• If the voltage problem is not mitigated in time, OEL

relays will trip, leading to even more severe voltage

problems. Moreover, when generators are tripped, the

system may also experience low frequency problem.

• At some point, as the voltage level in the transmission

network is too low, the transmission line distance relay

may trip with Zone 3, or even Zone 2 element.

Depending on the strength of the system, the voltage

collapse phenomenon can occur in a time frame of several

minutes. The load response to voltage variation also plays an

important role in the voltage dynamics.

III. RELAY PERFORMANCE DURING MAJOR GRID FAILURES

In order to accurately assess the voltage instability process

and the sequence of events, it is necessary to consider the

operation of protective relays which can operate during the

process. This section provides an overview of principal relay-

ing component, and their models in PSS/E.

A. Over-current relay.

General principle of over-current protection relays is to

send a tripping signal to current-interrupting devices when

the measured current exceeds the predetermined value. Over-

current relay operation often acts as a triggering event in the

beginning of voltage stability process, and is direct cause

of bifurcation. In this research, built-in model TIOCR1 of

PSSE was utilized to simulate the operation of over-current

relays. Setting parameters of TIOCR1 models were calculated

according to [8].

B. Distance protection relay

Distance protection relay is an impedance relay, which

calculates apparent impedance from the voltage and current

at relays location. If the measured impedance enters the

protection zone, the relay will pick up and send tripping

signals when its timer timed out.

The apparent impedance of distance relays depends greatly

on measured voltage. Therefore, distance protection relays
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Fig. 1. Distance relay characteristic.

might operate during voltage instability process (which is

correct, but inappropriate [9]). In our simulations, distance

protection relays were simulated by PSSEs built-in model

RXR1 [10]. Setting parameters of RXR1 models were cal-

culated according to [8]. The characteristics of model RXR1

are described in Fig. 1.

C. Out-of-step relay.

Out-of-step relay is also an impedance relay, used to prevent

severe loss of synchronism between the generator and the

power system. The relay sends tripping signal when it detects

passage of the apparent impedance locus through an area of

its characteristic. A rapid passage is interpreted as evidence of

a fault. A passage which takes more than a defined time might

indicate a power oscillation, or out-of-step condition [11].

Similar to distance protection relay, out-of-step relay is sen-

sitive to voltage drop. Therefore, it may operate during voltage

collapse. In this research, out of step relays is simulated

by PSSE model CIROS1 [10], with double lens impedance

characteristic, as shown in Fig. 2.

D. Over-excitation limiter - OEL

Disturbances can make generators operate at the excitation

level that higher than nominal. Those cases can lead to

overload of generator field winding. Because of that, over

excitation limiter (OEL) is utilized to reduce the field current,

prevent overheating in generator field. While this action can

protect the generator, OEL contributes to voltage stability since

it make the reactive power burden to other generators. The

operation of a generator’s OEL, therefore, can lead to the

operation of another generators OEL. Over-excitation limiter

is simulated in PSS/E by the MAXEX1 model. The models

characteristic is shown in Fig. 3. In this study, settings for

OEL function are based on the IEEE guide C37.102 [12] and

generators parameters.
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E. Under-frequency load-shedding relay

When the interconnection lines are tripped, the power

system can be divided in to various separate islands, in

which frequencies depend on the balance between load and

available generation. If load exceeds generation, frequency will

decrease, which, in some case, causes a frequency collapse.

To prevent frequency collapse and recover the island from

under-frequency situation, under-frequency load-shedding re-

lay is used. The relay drops a sufficient amount of load

when measured frequency is less than predetermined value.

Under-frequency load-shedding relay is simulated in PSS/E by

LDSHxx type models. Setting parameters of LDSHxx models

were calculated according to Vietnam Grid Code.

IV. SIMULATION RESULTS

The simulation model is constructed in PSS/E, based on the

typical operating condition of the Viet nam power system in

late 2012/early 2013. There are approximately 1500 bus and

2000 branches, from 110kV to 500kV voltage level. Besides

generators and generator control devices, relays models are

also modeled for important network elements (transmission

Fig. 4. Load flow condition prior to the grid disturbance.

lines and generators), especially those close to the studied

region. The typical operating condition is shown in Fig. 4. In

this operation mode, the circuit Di Linh - Tan Dinh is loaded

at around 1000MW (approximately the SIL at 500kV voltage

level). The tripping of this transmission line would therefore

cause severe impact on the remaining circuits.

When the 500kV Di Linh - Tan Dinh circuit is tripped,

the other transmission lines have to carry additional active

power. Moreover, the remaining circuits would also have to

operate above their SIL level, which creates additional reactive

demand. As a result, the generating units connecting to this

500kV system would have to produce more reactive power.

Besides, the shortage of reactive power also affects the

distance relay, since apparent impedances are reduced with

voltage. Therefore distance relays might also be activated. It

should be noted that the distance protection on the 500kV

transmission line of Vietnam has a somewhat large zone 2,

since it is calculated based on the assumption that all series

compensators are bypassed. Under heavy load condition and

low voltage, the zone 2 distance protection may be activated

(phase-phase element).

For the simulation scenarios created in our study, distance

relays on the Dak Nong - Phu Lam transmission lines and OEL

protection of Phu My power plant (which connects to the Phu

My 500kV substation) are activated when the Di Linh - Tan

Dinh circuit is tripped.

A. Stable scenario

In this scenario, the resistive element of the Zone 2 element

of the Dak Nong-Phu Lam circuit was set to 1.56 times the

reactance element. This setting is in the range of recommended

setting by Siemens [8]. With this setting, the Dak Nong-Phu

Lam circuit is tripped by Zone 2 element at 7.89s, which split

the Northern and the Southern system. The detailed sequence

of events are as follows:

• At 2.00s, a permanent fault occurs on 500kV transmission

line Di Linh-Tan Dinh, near 500kV Tan Dinh substation.



Fig. 5. Bus frequencies of the first scenario.

Fig. 6. Impedance locus of Phu Lam-DakNong 500kV line, stable scenario.

At 2.042s, Di Linh- Tan Dinh 500kV line trips. Voltages

are recovered, but less than prior-fault voltages. The lack

of reactive power in The South leads to the activation of

some generator OELs, especially at the Phu My power

plant.

• At 4.004s, over-current relay of 220kV transmission line

Di Linh-Bao Loc activates. At 6.98s, this relay timer

timed out. The 220kV transmission line Di Linh Bao Loc

trips at 7.04s.

• At 7.56s, distance relay of 500kV Dak Nong- Phu Lam

activates with apparent impedance in zone 2. The tripping

signal is sent at 7.86. Dak Nong- Phu Lam line trips at

7.89s. Impedance locus observed by 500kV Dak Nong

Phu Lam relay is shown in Fig. 6.

• The last interconnection between Northern and Southern

power grid is 220kV transmission line Dak Nong- Binh

Long. This line is soon tripped by distance relay at

8.152s. The power system divides into 2 separate islands.

After the separation, northern grid frequency increases to

51.5 Hz, then stabilizes at 50.4 Hz by generators governor

action. At the same time, southern grid frequency decreases

to 47.5 Hz due to the imbalance between load and available

generation. From 10.39s to 17.32s, under-frequency load-

0 20 40 60 80 100 120 140 160 180 200
0.6

0.7

0.8

0.9

1

1.1

Time (s)

Phu Lam
Tan Dinh Phu My

V
ol

ta
ge

 (p
u)

Di Linh Dak Nong

Fig. 7. Bus voltages, stable scenario.

shedding relays in the South operate. The total amount of

shed load is 2172 MW, which is roughly equal to the lack

of active power in the South. The load shedding helps recover

frequency in the Southern grid (Fig. 5). Some comments for

this scenario are as follows:

• The power system split before OELs protection timed out.

• After system separation, thanks to the operations of load-

shedding relays, the southern grid frequency is stabilized.

• After load-shedding has finished, the voltages in The

South are recovered (Fig. 7). Therefore the OELs reset.

In this scenario, the blackout event did not occur. However,

nearly 2000MW of load (which is approximately the amount

of power imported from the Northern grid prior to the distur-

bance) has been shed.

B. Unstable scenario
In this scenario, Zone 2 distance protection of Dak Nong-

Phu Lam circuit has only slightly smaller resistive reach (1.55

times its reactance element). However, the resulting course of

events has changed drastically:

• At 2.00s, a permanent fault occurs on 500kV transmission

line Di Linh- Tan Dinh, near 500kV Tan Dinh substation.

At 2.042s, Di Linh- Tan Dinh 500kV line trips. Voltages

are recovered, but less than prior-fault voltages. The lack

of reactive power in The South leads to the activation of

some OELs, especially those at the Phu My powerplant.

• At 4.004s, over-current relay of 220kV transmission line

Di Linh-Bao Loc activates. At 6.98s, this relay operates

and send a tripping signal to the circuit breaker. The

220kV transmission line Di Linh Bao Loc trips at 7.04s

• At this point, the sequence of events are the same as in

the first scenario. OELs of Phu My power plant and some

other power plants are activated. The impedance locus of

the Dak nong-Phu Lam circuit is also drifting slowly, but

does not enter the protection zone (Fig. 8).

• Since the Dak Nong-Phu Lam circuit remains in service,

the North-South interconnection is kept. However, several

generating unit OEL are activating. Finally, at 41.58s, the

OEL of PHUMY 2.1 plant trips, leading to a cascading

relay operation in the South. From 41.58s to 88.93s, there

are 13 OEL operated, reducing voltage profile of the

South.



Fig. 8. Impedance locus of Phu Lam-DakNong 500kV line, unstable scenario

Fig. 9. Bus frequencies, unstable scenario.

• Voltage drop and overloading in 500kV transmission line

Phu Lam- Dak Nong caused further reduction in apparent

impedance observed by distance relay. Finally the 500kV

Dak Nong- Phu Lam circuit is tripped at 92.18s.

• After that, at 92.56s, the last South-North interconnection

line 220kV Dak Nong- Binh Long trips due to over-

loading. Voltage collapse phenomenon is observed in the

southern area, since there are too little dynamic reactive

support left at this time to maintain the transmission

voltage.

The voltage collapse can be observed clearly in the Fig.

10. Voltages in the Southern regions reach as low as 0.4pu.

The system frequency of this scenario is shown in Fig. 9. Due

to low voltage, several other generators lose synchronism, and

are tripped by out-of-step relays. Besides, several transmission

lines are also tripped by distance protection relays. This result

and the time frame to voltage collapse agree well with actual

fault records.

V. CONCLUSION

This paper presents our initial simulation results of a major

grid blackout in Vietnam on May 22nd, 2013. The protective

relaying system has been taken into account. The study reveals

Fig. 10. 500kV bus voltages, unstable scenario.

that the sequence of relay operation can change drastically the

final outcome of the power system contingency. In the studied

scenarios, if the grid is separated prior to the operation of

OELs relays, the blackout event could have been avoided.

It should be noted that the validation of all conclusion from

this study is a very difficult task. In fact, the actual event data

involve a large number of fault records, the exact sequence

of which has not yet fully established. However, the unstable

scenario in this study has the time frame to voltage collapse,

and several relay operations which agree well with the main

events during May 2013 grid disturbance.
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